Sample menu:

Macedonian Veterinary Review

logo

p-ISSN 1409-7621
e-ISSN 1857-7415

line
Co-publishing with:
line
 
De Gruyter
line
Indexed in:
line
o
line
scopus
line
EBSCO
line
DOAJ
line
Index_Copernicus
line
Read more...

Abstract / References


Linija
Original Scientific Article
Published 15 March 2017
 
access
 

Bovine tuberculosis in the Republic of Macedonia: postmortem, microbiological and molecular study in slaughtered reactor cattle
Iskra Cvetkovikj, Slavcho Mrenoshki, Kiril Krstevski, Igor Djadjovski, Branko Angjelovski, Zagorka Popova, Aleksandar Janevski, Aleksandar Dodovski, Aleksandar Cvetkovikj
Veterinary Institute, Faculty of Veterinary Medicine, Ss. Cyril and MethodiusUniversity in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, Republic of Macedonia

ABSTRACT
Bovine tuberculosis is a chronic infectious disease in cattle caused mainly by Mycobacterium bovis and to a lesser extent by Mycobacterium caprae. The other members of the Mycobacterium tuberculosis complex (MTBC) can also cause the disease in domestic and wild animals and all of them have a zoonotic potential. The main purpose of the study was to determine the presence and distribution of the tuberculous lesions in reactor cattle, and to isolate and identify the causative agents of bovine tuberculosis in the Republic of Macedonia. Lymph nodes and affected organs from 188 reactor cattle slaughtered due to a positive intradermal comparative cervical tuberculin test were analyzed by detection of tuberculous lesions, followed by isolation and molecular identification of the isolated mycobacteria. The isolation was performed on selective media – Lowenstein Jensen with glycerol, Lowenstein Jensen without glycerol and Stonebrink medium supplemented with pyruvate. The molecular identification of the MTBC members was performed by analysis of the Regions of difference (RD1, RD9 and RD4) and detection of single nucleotide polymorphisms in the lepA gene for Mycobacterium caprae. Typical tuberculous lesions were detected in 62 animals (33.0%) and the lesions were most prevalent in the mediastinal lymph nodes (47.5%). The isolated mycobacteria in the MTBC were identified as Mycobacterium bovis and Mycobacterium caprae and were found in both animals with visible lesions (82.2%) and animals without visible lesions (27.7%). The slaughterhouse postmortem examinations and laboratory investigations should be included on regular bases in order to improve the National eradication program.
Key words: bovine tuberculosis, Mycobacterium bovis, Mycobacterium caprae, PCR, Republic of Macedonia

Mac Vet Rev 2017; 40 (1): 43-52
   
[ PDF Free Article ] pdf Linija          
Available Online First: 15 December 2016
 
 
Linija
References
 
 
.
1.

O'Reilly, L.M., Daborn, C.J. (1995). The epidemiology of Mycobacterium bovis infections in animals and man. A review. Tuber Lung Dis. 76 (1): 1–46.
https://doi.org/10.1016/0962-8479(95)90591-X

2.

Pesciaroli, M., Alvarez, J., Boniotti, M.B., Cagiola, M., Di Marco V., Marianelli, C., Pacciarini, M., Pasquali, P. (2014). Tuberculosis in domestic animal species. Res Vet Sci. 97, Suppl. S78–85.
https://doi.org/10.1016/j.rvsc.2014.05.015
PMid:25151859

3.

Task force bovine tuberculosis subgroup. Working document on eradication of bovine tuberculosis in the EU accepted by the Bovine tuberculosis subgroup of the Task Force on monitoring animal disease eradication. (2006). SANCO/10200/2006. http://ec.europa.eu/food/animal/diseases/eradication/tb_workingdoc2006_en.pdf

4.

Brosch, R., Gordon, S., Marmiesse, M., Brodin, P., Buchrieser, C., Eiglmeier, K., Garnier, T., Gutierrez, C., Hewinson, G., Kremer, K., Parsons, L., Pym, A., Samper, S., Soolingen, D., Cole, S. (2002). A new evolutionary scenario for the Mycobacterium tuberculosis complex. P Natl Acad Sci USA. 99 (6): 3684–3689.
https://doi.org/10.1073/pnas.052548299
PMid:11891304 PMCid:PMC122584

5.

Schiller, I., Waters, W.R., Vordermeier, H.M., Jemmi, T., Welsh, M., Keck, N., Whelan, A., Gormley, E., Boschiroli, M.L., Moyen, J.L., Vela, C., Cagiola, M., Buddle, B.M., Palmer, M., Thacker, T., Oesch, B. (2011). Bovine tuberculosis in Europe from the perspective of an officially tuberculosis free country: trade, surveillance and diagnostics. Vet Microbiol. 151 (1): 153–159.
https://doi.org/10.1016/j.vetmic.2011.02.039
PMid:21439740

6.

Shitaye J.E., Tsegaye W., Pavlik I. (2007). Bovine tuberculosis infection in animal and human populations in Ethiopia: a review. Vet Med (Praha) 52 (8): 317–332.

7.

Muller, B., Durr, S., Alonso, S., Hattendorf, J., Laisse, C.J., Parsons, S.D., Van Helden, P.D., Zinsstag, J. (2013). Zoonotic Mycobacterium bovis-induced tuberculosis in humans. Emerg Infect Dis. 19 (6): 899–908.
https://doi.org/10.3201/eid1906.120543
PMid:23735540 PMCid:PMC4816377

8.

Gramatikovski, G., Stojanoski, B. (1985). Epidemiological situation of infectious diseases in Socialistic Republic of Macedonia 1927-1977, Veterinary Institute Skopje. (in Macedonian).

9.

Nikolovski, G., Petrov, E.A., Cokrevski, S., Arsevska, E., Nikolovska, G. (2012) Bovine tuberculosis in cattle during the implementation of official control measures in Republic of Macedonia for the period 2007-2009. Slov Vet Res 49 (2): 79-87.

10.

Food and Veterinary Agency of Republic of Macedonia (2007). Program for eradication of bovine tuberculosis. Official Gazette of Republic of Macedonia No. 22/2007. (in Macedonian). http://fva.gov.mk/images/PROGRAMA_NA_TUBERKULOZATA_KAJ_GOVEDATA.pdf

11.

OIE. (2009). Bovine tuberculosis. Manual for diagnostic tests and vaccines for terrestrial animals. http://www.oie.int/fileadmin/Home/eng/Health_standards/tahm/2.04.07_BOVINE_TB.pdf

12.

Corner, L.A., Gormley, E., Pfeiffer, D.U. (2012). Primary isolation of Mycobacterium bovis from bovine tissues: conditions for maximising the number of positive cultures. Vet Microbiol. 156 (1): 162–171.
https://doi.org/10.1016/j.vetmic.2011.10.016
PMid:22074859

13.

Gormley, E., Corner, L.A., Costello, E., Rodriguez-Campos, S. (2014). Bacteriological diagnosis and molecular strain typing of Mycobacterium bovis and Mycobacterium caprae. Res Vet Sci. 97 Suppl, S30-43.
https://doi.org/10.1016/j.rvsc.2014.04.010
PMid:24833269

14.

Pinsky, B.A., Banaei, N. (2008). Multiplex real-time PCR assay for rapid identification of Mycobacterium tuberculosis complex members to the species level. J Clin Microbiol. 46 (7): 2241–2246.
https://doi.org/10.1128/JCM.00347-08
PMid:18508937 PMCid:PMC2446918

15.

Domogalla, J., Prodinger, W.M., Blum, H., Krebs, S., Gellert, S., Muller, M., Neuendorf, E., Sedlmaier, F., Buttner, M. (2013). Region of difference 4 in alpine Mycobacterium caprae isolates indicates three variants. J Clin Microbiol. 51 (5): 1381–1388.
https://doi.org/10.1128/JCM.02966-12
PMid:23408688 PMCid:PMC3647898

16.

Reddington, K., O'Grady, J., Dorai-Raj, S., Niemann, S., van Soolingen, D., et al. (2011). A Novel multiplex Real-Time PCR for the identification of Mycobacteria associated with zoonotic tuberculosis. PLoS One 6 (8): e23481.
https://doi.org/10.1371/journal.pone.0023481
PMid:21858140 PMCid:PMC3153498

17.

Rivière, J., Carabin, K., Le Strat, Y., Hendrikx, P., Dufour, B. (2014). Bovine tuberculosis surveillance in cattle and free-ranging wildlife in EU Member States in 2013: a survey-based review. Vet Microbiol. 173 (3): 323-331.
https://doi.org/10.1016/j.vetmic.2014.08.013
PMid:25205200

18.

Schiller, I., Oesch, B., Vordermeier, H.M., Palmer, M.V., Harris, B.N., Orloski, K.A., Buddle,B.M., Thacker, T.C., Lyashchenko, K.P., Waters, W.R. (2010). Bovine tuberculosis. A review of current and emerging diagnostic techniques in view of their relevance for disease control and eradication. Transbound Emerg Dis. 57 (4): 205–220.
https://doi.org/10.1111/j.1865-1682.2010.01148.x

19.

Fitzgerald, S.D., Hollinger, C., Mullaney, T.P., Bruning-Fann, C.S., Tilden, J., Smith, R., Averill, J., Kaneene, J.B. (2016). Herd outbreak of bovine tuberculosis illustrates that route of infection correlates with anatomic distribution of lesions in cattle and cats. J Vet Diagn Invest. 28 (2): 129-132.
https://doi.org/10.1177/1040638715626484
PMid:26965232

20.

Pritchard, D.G. (1988). A century of bovine tuberculosis 1888–1988: conquest and controversy. Comp Clin Path. 99 (4): 357-399.
https://doi.org/10.1016/0021-9975(88)90058-8

21.

Whipple, D.L., Bolin, C.A., Miller, J.M. (1996). Distribution of lesions in cattle infected with Mycobacterium bovis. J Vet Diagn Invest. 8 (3): 351-354.
https://doi.org/10.1177/104063879600800312
PMid:8844579

22.

Corner, L.A. (1994). Post mortem diagnosis of Mycobacterium bovis infection in cattle. Vet Microbiol. 40 (1): 53-63.
https://doi.org/10.1016/0378-1135(94)90046-9

23.

Ministry of Agriculture, Food and Environment (2013). National Eradication Program for Bovine tuberculosis in Spain for 2013 (in Spanish)

24.

European Commission Health & Consumer Protection Directorate-General Veterinary and International Affairs Unit G5 -Veterinary Programmes. (2013). Working Document on eradication of Bovine tuberculosis in the EU. SANCO/10067/2013

25.

Croatian Ministry of agriculture (2015). Annual order for animal protection from infectious and parasitic diseases for 2016. Official Gazette of Croatia No. 141/2015 (in Croatian)  http://narodne-novine.nn.hr/clanci/sluzbeni/2016_04_31_846.html

26.

Boritsch, E.C., Supply, P., Honore, N., Seeman, T., Stinear, T. P., Brosch, R. (2014). A glimpse into the past and predictions for the future: the molecular evolution of the tuberculosis agent. Mol. Microbiol. 93 (5): 835–852.
https://doi.org/10.1111/mmi.12720
PMid:25039682

27.

Mostowy, S., Cousins, D., Brinkman, J., Aranaz, A., Behr, M.A. (2002). Genomic deletions suggest a phylogeny for the Mycobacterium tuberculosis complex. J Infect Dis. 186 (1): 74–80.
https://doi.org/10.1086/341068
PMid:12089664

28.

Huard, R.C., Lazzarini, L.C., Butler, W.R., van Soolingen, D., Ho, J.L. (2003). PCR-based method to differentiate the subspecies of the Mycobacterium tuberculosis complex on the basis of genomic deletions. J. Clin. Microbiol. 41 (4): 1637–1650.
https://doi.org/10.1128/JCM.41.4.1637-1650.2003
PMid:12682155 PMCid:PMC153936

29.

Warren, R.M., Gey van Pittius, N.C., Barnard, M., Hesseling, A., Engelke, E., de Kock, M., Gutierrez, M.C., Chege, G.K., Victor, T.C., Hoal, E.G., van Helden, P.D. (2006). Differentiation of Mycobacterium tuberculosis complex by PCR amplification of geno- mic regions of difference. Int. J. Tuberc. Lung Dis. 10 (7): 818–822.
PMid:16850559

30.

Pounder, J.I., Anderson, C.M., Voelkerding, K.V., Salfinger, M., Dormandy, J., Somoskovi, A., Heifets, L., Graham, J.J., Storts, D.R., Petti, C.A. (2010). Mycobacterium tuberculosis complex differentiation by genomic deletion patterns with multiplex polymerase chain reaction and melting analysis. Diagn. Microbiol. Infect. Dis. 67 (1): 101–105.
https://doi.org/10.1016/j.diagmicrobio.2009.12.014
PMid:20227227

31.

Rettinger, A., Broecki, S., Fink, M., Prodinger, W.M., blum, H., Krebs, S., Domogalla, J., Just, F., Gellert, S., Straubinger, R.K., Buttner M. (2015). The region of difference four is a robust genetic marker for subtyping Mycobacterium caprae Isolates and is linked to spatial distribution of three subtypes. Transbound Emerg Dis.
https://doi.org/10.1111/tbed.12438
PMid:26518998

32.

Rodriguez, S., Bezos, J., Romero, B., de Juan, L., Alvarez, J., Castellanos, E., Moya, N., Lozano, F., Javed, M.T., Saez-Llorente, J.L., Liebana, E., Mateos, A., Dominguez, L., Aranaz, A. (2011). Mycobacterium caprae infection in livestock and wildlife. Spain. Emerg. Infect. Dis. 17 (3): 532–535.
https://doi.org/10.3201/eid1703.100618
PMid:21392452 PMCid:PMC3165998

33.

Munyeme, M., Rigouts, L., Shamputa, I.C., Muma, J.B., Tryland, M., Skjerve, E., Djønne, B. (2009). Isolation and characterization of Mycobacterium bovis strains from indigenous Zambian cattle using Spacer oligonucleotide typing technique. BMC microbiology 9 (1):1.
https://doi.org/10.1186/1471-2180-9-144
PMid:19619309 PMCid:PMC2719650

34.

Proano-Pérez, F., Benitez-Ortiz, W., Desmecht, D., Coral, M., Ortiz, J., Ron, L., Portaels, F., Rigouts, L., Linden, A. (2011). Post-mortem examination and laboratory-based analysis for the diagnosis of bovine tuberculosis among dairy cattle in Ecuador. Prev Vet Med. 101 (1): 65-72.
https://doi.org/10.1016/j.prevetmed.2011.04.018
PMid:21645934

35.

Nassar, A.F.C., Miyashiro, S., Oliveira, C.G., Pacheco, W.A. and Ogata, R.A. (2007). Isolation and identification of bovine tuberculosis in a Brazilian herd (São Paulo). Mem Inst Oswaldo Cruz. 102 (5): 639-642.
https://doi.org/10.1590/S0074-02762007005000073
PMid:17710311

36.
 Shittu, А., Clifton-Hadley, R.S., Ely, E.R., Upton, P.U., Downs, S.H. (2008). Factors associated with bovine tuberculosis confirmation rates in suspect lesions found in cattle at routine slaughter in Great Britain, 2003–2008. Prev Vet Med. 110 (3): 395– 404.
37.

Courcoul, A., Moyen, J.L., Brugere, L., Faye, S., Henault, S., Gares, H., Boschiroli, M.L. (2014). Estimation of sensitivity and specificity of bacteriology, histopathology and PCR for the confirmatory diagnosis of bovine tuberculosis using latent class analysis. PloS one 9(3): p.e90334.
https://doi.org/10.1371/journal.pone.0090334
PMid:24625670 PMCid:PMC3953111

38.

Duignan, A., Good, M., More, S.J. (2012). Quality control in the national bovine tuberculosis eradication programme in Ireland. Rev. Sci. Tech. Off. Int. Epiz. 31, 845-860.
https://doi.org/10.20506/rst.31.3.2166

39.

Good, M., Duignan, A. (2011). An evaluation of the Irish Single Reactor Breakdown Protocol for 2005 to 2008 inclusive and its potential application as a monitor of tuberculin test performance. Vet. Microbiol. 151 (1): 85 –90.
https://doi.org/10.1016/j.vetmic.2011.02.029
PMid:21441002

40.

De la Rua-Domenech, R., Goodchild, A.T., Vordermeier, H.M., Hewinson, R.G., Christiansen, K.H., Clifton-Hadley, R.S. (2006). Ante mortem diagnosis of tuberculosis in cattle: a review of the tuberculin tests, γ-interferon assay and other ancillary diagnostic techniques. Res Vet Sci. 81 (2): 190-210.
https://doi.org/10.1016/j.rvsc.2005.11.005
PMid:16513150

41.

Cvetnic, Z., Katalinic-Jankovic, V., Sostaric, B., Spicic, S., Obrovac, M., Marjanovic, S., Benic, M., Kirin, B.K., Vickovic, I. (2007). Mycobacterium caprae in cattle and humans in Croatia. Int J Tuberc Lung Dis. 11 (6): 652–658.
PMid:17519097

42.

Beširović, H., Alić, A., Špičić, S., Cvetnić, Ž., Prašović, S., Velić, L. (2012). Bovine tuberculosis in Bosnia and Herzegovina caused by Mycobacterium caprae. Vet Arhiv. 82 (4): 341-349.

43.

Boniotti, M.B., Goria, M., Loda, D., Garrone, A., Benedetto, A., Mondo, A., Tisato, E., Zanoni, M., Zoppi, S., Dondo, A., Tagliabue, S., Bonora, S., Zanardi, G., Pacciarini, M.L. (2009). Molecular typing of Mycobacterium bovis strains isolated in Italy from 2000 to 2006 and evaluation of variable-number-tandem-repeats for a geographic optimized genotyping. J Clin Microbiol. 47 (3): 636–644.
https://doi.org/10.1128/JCM.01192-08
PMid:19144792 PMCid:PMC2650904

44.

Prodinger, W.M., Brandstätter, A., Naumann, L., Pacciarini, M., Kubica, T., Boschiroli, M.L., Aranaz, A., Nagy, G., Cvetnic, Z., Ocepek, M., Skrypnyk, A., Erler, W., Niemann, S., Pavlik, I., Moser, I. (2005). Characterization of Mycobacterium caprae isolates from Europe by mycobacterial interspersed repetitive unit genotyping. J Clin Microbiol. 43 (10): 4984–4992.
https://doi.org/10.1128/JCM.43.10.4984-4992.2005
PMid:16207952 PMCid:PMC1248478

45.

Sahraoui, N., Muller, B., Guetarni, D., Boulahbal, F., Yala, D., Ouzrout, R., Berg, S., Smith, N.H., Zinsstag, J. (2009). Molecular characterization of Mycobacterium bovis strains isolated from cattle slaughtered at two abattoirs in Algeria. BMC Vet Res. 5 (1): 4.
https://doi.org/10.1186/1746-6148-5-4
PMid:19173726 PMCid:PMC2640374

46.

Zeng, W., Zhang, Y., Zhao, X., Huang, G., Jiang, Y., Dong, H., Li, X., Wan K., He, C. (2013). Occurrence of non-tuberculous mycobacteria species in livestock from northern China and first isolation of Mycobacterium caprae. Epidemiol Infect. 141 (7): 1545-1551.
https://doi.org/10.1017/S0950268812003020
PMid:23298678

47.

Shitaye, J.E., Getahun, B., Alemayehu, T., Skoric, M., Treml, F., Fictum, P., Vrbas, V., Pavlik, I. (2006). A prevalence study of bovine tuberculosis by using abattoir meat inspection and tuberculin skin testing data, histopathological and IS6110 PCR examination of tissues with tuberculous lesions in cattle in Ethiopia. Vet Med (Praha). 51 (11): 512–522.

48.

European Food and safety Authority. (2014). The European Union Summary Report on Trends and Sources of Zoonoses. Zoonotic Agents and Food-borne Outbreaks in 2012. EFSA Journal 12 (2): 3547 (pp 312).

49.

Rodriguez, E., Sanchez, L.P., Perez, S., Herrera, L., Jimenez, M.S., Samper, S., Iglesias, M.J. (2009). Human tuberculosis due to Mycobacterium bovis and M. caprae in Spain, 2004–2007. Int J Tuberc Lung D. 13 (12): 1536–1541.
PMid:19919773

 
 
Linija

 

 

 

lc
cope This journal is a member of and subscribes to the principles of the Committee on Publication Ethics.
crossref
CrosCheck
lc
Creative Commons License
The all content of the Journal "Mac Vet Rev", except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
iThenticate
lc