Sample menu:

Macedonian Veterinary Review


p-ISSN 1409-7621
e-ISSN 1857-7415

Co-publishing with:
De Gruyter

Abstract / References

Original Scientific Article
Published on: 15 October 2017

In-vitro labelling of ovine adipose-derived mesenchymal stem cells (oADMSCS) and tracking using MRI technique

Ravi Gnanam Gnanadevi1, Geetha Ramesh1, Thandavan Arthanari Kannan2, Benjamin Justin William2, Manoharan Parthiban3, Gnanasigamani Sathyan4

1Department of Veterinary Anatomy, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, India

2Centre for Stem Cell Research and Regenerative Medicine, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, India

3Department of Animal Biotechnology, Madras Veterinary College, Tamil Nadu Veterinary and Animal Sciences University, India

4Department of Radiodiagnosis, Government Stanley Medical College, Chennai, India


To understand the mechanisms standing behind a successful stem cell‑based therapy, the monitoring of transplanted cell’s migration, homing as well as the engraftment efficiency and functional capability in-vivo has become a critical issue. The present study was designed to track the labelled oADMSCs in-vitro and its visualization through MRI technique. oADMSCs from passage 4 (P-4) to passage 6 (P-6) were labelled with superparamagnetic iron oxide (SPIO) conjugated with rhodamine (Molday Ion Rhodamine-B - MIRB) at the concentration of 25μg Fe/ml in DMEM. Internalized MIRB was observed under fluorescent microscope after 72 hrs of incubation. Labelled oADMSCs showed Prussian Blue positive reaction demonstrating the iron uptake of the cells. The viability of the MIRB-labelled oADMSCs ranged between 98-99 per cent and Trypan blue exclusion test showed no significant difference in viability between labelled and unlabelled oADMSCs. MR signal in control group of cells was similar to that of water. MR signals or fluorescence in MIRB-labelled cells decreased with increasing concentrations of iron. The T2 weighted images of MIRB-labelled oADMSCs increased with increasing concentrations of SPIOs. The MIRB was found to be nontoxic, and did not affect proliferation capacity in-vitro.
Key words: ovine, mesenchymal stem cells, in-vitro MIRB labelling, MRI imaging

Mac Vet Rev 2017; 40 (2): 137-142
[ PDF Free Article ] pdf Linija          
Available Online First: 22 May 2017

1. Shen, W.B., Plachez, C., Chan, A., Yarnell, D., Puche, A.C, Fishman, P.S., Yarowsky, P. (2013). Human neural progenitor cells retain viability, phenotype, proliferation, and lineage differentiation when labeled with a novel iron oxide nanoparticle, Molday ION Rhodamine B. International Journal of Nanomedicine 8, 4593–4600.
PMid:24348036 PMCid:PMC3849141

2. Daldrup-Link, H.E., Rudelius, M., Piontek, G., Rudelius, M., Piontek, G., Metz, S., Bräuer, R., Debus, G., Corot, C., Schlegel, J., Link, T. M., Peschel, C., Rummeny, E.J., Oostendorp, R.A. (2005). Migration of iron oxide-labeled human hematopoietic progenitor cells in a mouse model: in vivo monitoring with 1.5-T MR imaging equipment. Radiology 234, 197–205.

3. Bussolati, B., Camussi, G. (2006). Adult stem cells and renal repair. J Nephrol. 19, 706–709.

4. Henning, T.D., Wendland, M.F., Golovko, D., Sutton, E.J., Sennino, B., Malek, F., Bauer, J.S., McDonald, D.M., Daldrup-Link, H. (2009). Relaxation effects of ferucarbotran-labeled mesenchymal stem cells at 1.5T and 3T: discrimination of viable from lysed cells. Magn Reson Med. 62, 325–32.
PMid:19353670 PMCid:PMC2931823

5. Hoehn, M., Kustermann, E., Blunk, J., Wiedermann, D., Trapp, T., Wecker, S., Focking, M., Arnold, H., Hescheler, J., Fleischmann, B.K., Schwindt, W., Bührle, C. (2002). Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci. 99, 16267–16272.
PMid:12444255 PMCid:PMC138600

6. Guzman, R., Uchida, N., Bliss, T.M., He, D., Christopherson, K.K., Stellwagen, D., Capela, A., Greve, J., Malenka, R.C., Moseley, M.E., Palmer, T.D., Steinberg, G.K. (2007). Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc Natl Acad Sci USA. 104 (24): 10211–10216.
PMid:17553967 PMCid:PMC1891235

7. Sykova, E., Jendelova, P. (2007). Migration, fate and in-vivo imaging of adult stem cells in the CNS. Cell Death Differ. 14, 1336–1342.

8. Addicott, B., Willman, M., Rodriguez, J., Padgett, K., Han, D., Berman, D., Hare, J.M., Kenyon, N.S. (2011). Mesenchymal stem cell labeling and in vitro MR characterization at 1.5T of new SPIO contrast agent: Molday ION Rhodamine B™ Contrast Media. Mol Imaging 6, 7 18.
PMid:20690161 PMCid:PMC4410881

9. Guercio, A., Marco, A. D., Casella, S., Cannella, V., Russotto, L., Purpari, G., Bella, S. D., Piccione, G. (2012). Production of canine mesenchymal stem cells from adipose tissue and their application in dogs with chronic osteoarthritis of the humeroradial joints. Cell Biol. Int. 36, 189-194.

10. Ren, Z.H., Wang, J.Y., Zou, C.L., Guan, Y.Q., Zhang, Y.A. (2011). Labeling of cynomolgus monkey bone marrow-derived mesenchymal stem cells for cell tracking by multimodality imaging. Sci China Life Sci. 54, 981–987.

11. Natalio, F., Wiese, S., Friedrich, N., Werner, P., Tahir, M.N. (2014). Localization and characterization of ferritin in Demospongiae: a possible role on spiculogenesis. Mar Drugs. 12 (8): 4659–4676.
PMid:25153764 PMCid:PMC4145336

12. Nan, H., Huang, J., Li, H., Li. Q., Liu, D. (2013). Assessment of biological characteristics of adipose tissue derived stem cells co labeled with Molday ION Rhodamine B™ and green fluorescent protein in-vitro. Mol Med Rep. 8, 1446-1452.

13. Snedecor, C.W., Cochran, W.G. (1994). Statistical methods. 9th Ed., Iowa state University press, Ames, Iowa.

14. Fan, J., Tan, Y., Jie, L., Wu, X., Yu, R., Zhang, M. (2013). Biological activity and magnetic resonance imaging of superparamagnetic iron oxide nanoparticles-labeled adipose-derived stem cells. Stem Cell Res Ther. 4, 44.
PMid:23618360 PMCid:PMC3706947

15. Schmidtke-Schrezenmeier, G., Urban, M., Musyanovych, A., Nder, V.M.A., Rojewski, M., Fekete, N., Menard, C., Deak, E., Tarte, K., Rasche, V., Landfester, K., Schrezenmeier, H. (2011). Labeling of mesenchymal stromal cells with iron oxide – poly (L -lactide) nanoparticles for magnetic resonance imaging: uptake, persistence, effects on cellular function and magnetic resonance imaging properties. Cytotherapy 13, 962–975.
PMid:21492060 PMCid:PMC3172145

16. Guo, R.M., Cao, N., Zhang, F., Wang, Y.R., Wen, X.H., Shen J., Shuai, X.T. (2012). Controllable labelling of stem cells with a novel superparamagnetic iron oxide–loaded cationic nanovesicle for MR imaging. Eur Radiol. 22 (11): 2328-2337.

17. Gnanadevi, R., Geetha Ramesh, Kannan, T. A., Justin William, B., Sathyan G., Hayath Basha, S. (2016). In-vitro study of MIRB labeled ovine bone marrow derived mesenchymal stem cells by MRI Technique. International Journal of Livestock Research 6 (9): 38-48.

18. Guthi, J.S., Yang, S.G., Huang, G., Li, S., Khemtong, C., Kessinger, C., Peyton, M., Minna, J., Brown, K.C., Gao, J. (2010). MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells. Mol Pharm. 7, 32–40.
PMid:19708690 PMCid:PMC2891983

19. Li, L., Jiang, W., Luo, K., Song, H., Lan, F., Wu, Y., Gu, Z. (2013). Superparamagnetic iron oxide nanoparticlesas MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics 3 (8): 595-615.
PMid:23946825 PMCid:PMC3741608

20. Shapiro, E.M, Skrtic, S., Sharer, K., Hill, J. M., Dunbar, C. E., Koretsky, A.P. (2004). MRI detection of single particles for cellular imaging. Proc Natl Acad Sci. 101, 10901–10906.
PMid:15256592 PMCid:PMC503717

21. Salamon, J., Wicklein, D., Didié, M., Lange, C., Schumacher, U., Adam, G., Peldschus, K. (2014). Magnetic resonance imaging of single co-labeled mesenchymal stromal cells after intracardial injection in mice. Fortschr Röntgenstr. 186, 367–376.





cope This journal is a member of and subscribes to the principles of the Committee on Publication Ethics.
Creative Commons License
The all content of the Journal "Mac Vet Rev", except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.