Sample menu:

Macedonian Veterinary Review

logo

p-ISSN 1409-7621
e-ISSN 1857-7415

line
Co-publishing with:
line
 
De Gruyter
line
Membership
line
cope
line
crossref
line
linked
line
crosref1
line
ithenticate
line
 

Abstract / References


Linija
Original Scientific Article
Published on: 15 October 2017
 
access
 

Importance of wild species kept in captivity as reservoirs of Salmonella serotypes for human in petting exhibitions and zoo in Iran with focus on antimicrobial resistance
Hamid Staji1, Ladan Zandiar2
1Department of Pathobiology, Faculty of Veterinary Medicine, Semnan University, Semnan, Iran
2Veterinary Medicine Laboratory Student, Semnan University, Semnan, Iran

 

ABSTRACT
Salmonella spp. is the leading cause of zoonotic enteric diseases wich represents a public health concern worldwide. The incidence of zoo-associated salmonellosis is rather high due to the high prevalence and shedding of this bacterium from wild animals specially kept in stressful conditions. To determine the potential public health risk presented by zoo animals in Semnan, we investigated the prevalence of Salmonella serovars Enteritidis and Typhimurium among wild animal species kept in the zoo and pet shops. Totally, 152 fecal samples from species in the zoo and pet shops were collected and Salmonella prevalence and identification was assessed via standard bacteriologic culture methods, serotyping, multiplex- PCR and antimicrobial susceptibility testing. Overall, 21% (32/152) of the samples were confirmed positive for Salmonella and serotyping showed 12.5% (19/32) Salmonella serovar Enteritidis and 8.5% (13/32) serovar Typhimurium, respectively. All the Salmonella isolates were sensitive to Chloramphenicole, Flurefenicole, Meropenem, Ceftizoxime, Imipenem and Ampicillin, while resistance was observed in the case of Nalidixic acid (78%) as the highest resistance, Streptomycin (28%), Oxytetracycline, Neomycin, Furazolidone (each one 15%) and Lincospectin (9.3%). The high occurrence of multidrug resistance Salmonella in zoo and pet animals represents a potential threat to public health and requires strict surveillance and application of hygienic criteria.
Key words: Salmonella, wild species in captivity, serotyping, multiplex-PCR, antimicrobial resistance

Mac Vet Rev 2017; 40 (2): 167-175
   
[ PDF Free Article ] pdf Linija          
Available Online First: 9 September 2017
 
 
Linija
References
 
 
 

1. Pan, Z. M., Geng, S. Z., Zhou, Y. Q., Liu, Z. Y., Fang, Q., Liu, B. B., & Jiao, X. A. (2010). Prevalence and antimicrobial resistance of Salmonella spp. isolated from domestic animals in Eastern China. J Anim Vet Adv. 9(17), 2290-4.
https://doi.org/10.3923/javaa.2010.2290.2294

2. Herrera-León, S., Ramiro, R., Arroyo, M., Díez, R., Usera, M. A., & Echeita, M. A. (2007). Blind comparison of traditional serotyping with three multiplex PCRs for the identification of Salmonella serotypes. Res Microbil. 158(2), 122-7.
https://doi.org/10.1016/j.resmic.2006.09.009
PMid:17258433

3. Mirzaie, S., Hassanzadeh, M., & Ashrafi, I. (2010). Identification and characterization of Salmonella isolates from captured house sparrows. Turk J Vet Anim Sci. 34(2), 181-6.

4. CDC September 4, 2015, Salmonella. Available: http://www.cdc.gov/salmonella/ [2015, 11/06].

5. Dallal, M. M. S. (2014). Prevalence of Salmonella spp. in packed and unpacked red meat and chicken in south of Tehran. Jundishapur J Microbiol.7(4).

6. Staji, H., Tonelli, A., Zahraei Salehi, T., Iorio, M., & Lopes, F. (2015). Genetic Characterization of Salmonella Typhimurium Isolates from Faeces of Children with Gastroenteritis Hospitalized in Baqiatollah-Azam Hospital, Tehran, Iran. J Med Microbiol Infect Dis. 3(1), 32-39.

7. Staji, H., Rezaei, S., Rassouli, M., Namroodi, S. (2016) Prevalence and genetic characteristics of Salmonella strains in wild mallard ducks (Anas plathyrhincus) in Semnan suburb, Iran. Bulg J Vet Med. first online.

8. Krawiec, M., Kuczkowski, M., Kruszewicz, A. G., & Wieliczko, A. (2015). Prevalence and genetic characteristics of Salmonella in free-living birds in Poland. BMC Vet Res. 11(1), 15.
https://doi.org/10.1186/s12917-015-0332-x
PMid:25636375 PMCid:PMC4316766

9. Jamshidi, A., Kalidari, G. A., & Hedayati, M. (2010). Isolation and identification of Salmonella Enteritidis and Salmonella Typhimurium from the eggs of retail stores in Mashhad, Iran using conventional culture method and multiplex PCR assay. J Food Safety. 30(3), 558-68.

10. Fudge, A. M. (2001). editor Diagnosis and treatment of avian bacterial disease. Seminars in avian and exotic pet Medicine. Elsevier.
https://doi.org/10.1053/saep.2001.19542

11. Tizard, I. (2004). editor Salmonellosis in wild birds. Seminars in avian and exotic pet medicine. Elsevier.
https://doi.org/10.1053/j.saep.2004.01.008

12. Peighambari, S.M., Yazdani, A., Hojjati, P.(2011). Salmonella infection in birds kept in parks and pet shops in Tehran, Iran. Iran J Vet Med. 5(3),145-8.

13. Chomel, B.B., Belotto, A., Meslin, F-X. (2007). Wildlife, exotic pets, and emerging zoonoses. Emerg Infect Dis. 13(1), 6.
https://doi.org/10.3201/eid1301.060480
PMid:17370509 PMCid:PMC2725831

14. Koochakzadeh, A., Zahraei Salehi, T., Nayeri Fasaei, B., Askari Badouei, M., Oskouizadeh, K. (2015). Detection of Salmonella spp. from some wild captive herbivores in Iran and determination of serogroup, antibiotic susceptibility and presence of invA gene in the isolated strains. Arch Razi Institute, 70(2), 81-87.

15. Sharifi-Rad, J., Van Belkum, A., Fallah, F., et al. (2016). Rising Antimicrobial Resistance in Iran. Der Pharm Lett, 8(7), 31-33.

16. Osmundson, T.W., Eyre, C.A., Hayden, K.M., Dhillon, J., Garbelotto, M.M. (2013). Back to basics: an evaluation of NaOH and alternative rapid DNA extraction protocols for DNA barcoding, genotyping, and disease diagnostics from fungal and oomycete samples. Mol Ecol Resources. 13(1), 66-74.
https://doi.org/10.1111/1755-0998.12031
PMid:23121735

17. Zahraei Salehi, T., Tadjbakhsh, H., Atashparvar, N., Nadalian, M., Mahzounieh, M. (2007). Detection and identification of Salmonella Typhimurium in bovine diarrhoeic fecal samples by immunomagnetic separation and multiplex PCR assay. Zoonoses Pub Health. 54(6‐7), 231-6.
https://doi.org/10.1111/j.1863-2378.2007.01061.x
PMid:17803511

18. Pan, T.M., Liu, Y.J. (2002). Identification of Salmonella enteritidis isolates by polymerase chain reaction and multiplex polymerase chain reaction. J Microbiol Immunol Infect. 35, 147-51.
PMid:12380786

19. Patel, J., Cockerill, III. F., Alder, J., Bradford, P., Eliopoulos, G., Hardy, D., et al.(2014). CLSI performance standards for antimicrobial susceptibility testing; twenty-fourth informational supplement. CLSI document M100-S24. 34.

20. Marchant, P., Hidalgo-Hermoso, E., Espinoza, K., Retamal, P. (2016). Prevalence of Salmonella enterica and Shiga toxin-producing Escherichia coli in zoo animals from Chile. J Vet Sci. 17(4), 583-6.
https://doi.org/10.4142/jvs.2016.17.4.583
PMid:27030195 PMCid:PMC5204038

21. Namroodi, S., Staji, H., Mazandarani, E. (2016). Epidemiological Survey of Salmonella in Rural Cats: A Survey of Serotype, Presence of spv R and spv B Genes, and Antibiotic Resistance Pattern. Iran J Epidemiol. 12(3), 47-55.

22. Clancy, M.M., Davis, M., Valitutto, M.T., Nelson, K., Sykes, I.V.J.M. (2016). Salmonella infection and carriage in reptiles in a zoological collection. J Am Vet Med Association. 248(9), 1050-9.
https://doi.org/10.2460/javma.248.9.1050
PMid:27074614

23. Grigar, M.K., Cummings, K.J., Rodriguez-Rivera, L.D., Rankin, S.C., Johns, K., Hamer, G.L., et al. (2016). Salmonella Surveillance Among Great-Tailed Grackles (Quiscalus mexicanus) and Other Urban Bird Species in Eastern Texas. Vector-Borne Zoonotic Dis. 16(12), 752-7.
https://doi.org/10.1089/vbz.2016.2000
PMid:27827557

24. Jang, Y., Lee, S., Lim, J., Lee, H., Kim, T., Park, J., et al. (2008). The rate of Salmonella spp. infection in zoo animals at Seoul Grand Park, Korea. J Vet Sci. 9(2), 177-81.
https://doi.org/10.4142/jvs.2008.9.2.177
PMid:18487939 PMCid:PMC2839095

25. Friedman, C.R., Torigian, C., Shillam, P.J., Hoffman, R.E., Heltze, D., Beebe, J.L., et al. (1998). An outbreak of salmonellosis among children attending a reptile exhibit at a zoo. J Pediat. 132(5), 802-7.
https://doi.org/10.1016/S0022-3476(98)70307-5

26. Bender, J.B., Shulman, S.A. (2004). Reports of zoonotic disease outbreaks associated with animal exhibits and availability of recommendations for preventing zoonotic disease transmission from animals to people in such settings. J Am Vet Med Association. 224(7), 1105-9.
https://doi.org/10.2460/javma.2004.224.1105

27. Conrad, C.C., Stanford, K., Narvaez-Bravo, C., Callaway, T., McAllister, T. (2017). Farm Fairs and Petting Zoos: A Review of Animal Contact as a Source of Zoonotic Enteric Disease. Foodborne pathog Dis. 14(2), 59-73.
https://doi.org/10.1089/fpd.2016.2185
PMid:27992253

28. Uzzau, S., Brown, D.J., Wallis, T., Rubino, S., Leori, G., Bernard, S., et al. (2000). Host adapted serotypes of Salmonella enterica. Epidemiol Infect. 125(02), 229-55.
https://doi.org/10.1017/S0950268899004379
PMid:11117946 PMCid:PMC2869595

29. Hernandez, S.M., Keel, K., Sanchez, S., Trees, E., Gerner-Smidt, P., Adams, J.K., et al. (2012). The Epidemiology of Salmonella enterica spp. enterica serovar Typhimurium Strain Associated with a Songbird Outbreak. Appl Environ Microbiol. 01408-12.

30. Crim, S.M., Griffin, P.M., Tauxe, R., Marder, E.P., Gilliss, D., Cronquist, A.B., et al. (2015). Preliminary incidence and trends of infection with pathogens transmitted commonly through food—Foodborne Diseases Active Surveillance Network, 10 US sites, 2006–2014. MMWR Morb Mortal Wkly Rep. 64(18), 495-9.
PMid:25974634

31. Hall, A.J., Saito, E.K. (2008). Avian wildlife mortality events due to salmonellosis in the United States, 1985–2004. J Wildlife Dis. 44(3), 585-93.
https://doi.org/10.7589/0090-3558-44.3.585
PMid:18689643

32. Madadgar, O., Salehi, T.Z., Ghafari, M.M., Tamai, I.A., Madani, S.A., Yahyareyat, R. (2009). Study of an unusual paratyphoid epornitic in canaries (Serinus canaria). Avian Pathology. 38(6), 437-41.
https://doi.org/10.1080/03079450903349170
PMid:19937532

33. Tadesse, D.A., Singh, A., Zhao, S., Bartholomew, M., Womack, N., Ayers, S., et al. (2016). Antimicrobial Resistance in Salmonella in the United States from 1948 to 1995. Antimicrob Agent Chemo. 60(4), 2567-71.
https://doi.org/10.1128/AAC.02536-15
PMid:26856840 PMCid:PMC4808194

34. Voss-Rech, D., Potter, L., Vaz, C.S.L., Pereira, D.I.B., Sangioni, L.A., Vargas, A.C., et al. (2017). Antimicrobial Resistance in Nontyphoidal Salmonella Isolated from Human and Poultry-Related Samples in Brazil: 20-Year Meta-Analysis. Foodborne pathog Dis. 14(2), 116-24.
https://doi.org/10.1089/fpd.2016.2228
PMid:27922763

35. Alley, M., Connolly, J., Fenwick, S., Mackereth, G., Leyland, M., Rogers, L., et al. (2002). An epidemic of salmonellosis caused by Salmonella Typhimurium DT160 in wild birds and humans in New Zealand. New Zealand Vet J. 50(5), 170-6.
https://doi.org/10.1080/00480169.2002.36306
PMid:16032266

36. Handeland, K., Refsum, T., Johansen, B., Holstad, G., Knutsen, G., Solberg, I., et al. (2002). Prevalence of Salmonella Typhimurium infection in Norwegian hedgehog populations associated with two human disease outbreaks. Epidemiol Infect. 128(03), 523-7.
https://doi.org/10.1017/S0950268802007021
PMid:12113498 PMCid:PMC2869850

37. Pires, S.M., Vieira, A.R., Hald, T., Cole, D. (2014). Source attribution of human salmonellosis: an overview of methods and estimates. Foodborne pathog Dis. 11(9), 667-76.
https://doi.org/10.1089/fpd.2014.1744
PMid:24885917

38. Dolejska, M., Villa, L., Hasman, H., Hansen, L., Carattoli, A. (2013). Characterization of IncN plasmids carrying blaCTX-M-1 and qnr genes in Escherichia coli and Salmonella from animals, the environment and humans. J Antimicrob Chemo. 68(2), 333-9.
https://doi.org/10.1093/jac/dks387
PMid:23060365

39. Mughini-Gras, L., Barrucci, F., Smid, J., Graziani, C., Luzzi, I., Ricci, A., et al. (2014). Attribution of human Salmonella infections to animal and food sources in Italy (2002–2010): adaptations of the Dutch and modified Hald source attribution models. Epidemiol Infect. 142(05),1070-82.
https://doi.org/10.1017/S0950268813001829
PMid:23920400

40. Dunn, J.R., Behravesh, C.B., Angulo, F.J. (2015). Diseases Transmitted by Domestic Livestock: Perils of the Petting Zoo. Microbiology Spectrum. 3(6).
PMid:27337283

41. Pickering, L.K., Marano, N., Bocchini, J.A., Angulo, F.J. (2008). Exposure to nontraditional pets at home and to animals in public settings: risks to children. Pediatrics. 122(4), 876-86.
https://doi.org/10.1542/peds.2008-1942
PMid:18829816

42. Erdozain, G., KuKanich, K., Chapman, B., Powell, D. (2013). Observation of public health risk behaviours, risk communication and hand hygiene at Kansas and Missouri petting zoos–2010–2011. Zoonoses Pub Health. 60(4), 304-10.
https://doi.org/10.1111/j.1863-2378.2012.01531.x
PMid:22846186

 
 
Linija

 

 

 

lc
cope This journal is a member of and subscribes to the principles of the Committee on Publication Ethics.
crossref
CrosCheck
lc
Creative Commons License
The all content of the Journal "Mac Vet Rev", except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
iThenticate
lc