Sample menu:

Macedonian Veterinary Review


p-ISSN 1409-7621
e-ISSN 1857-7415

Co-publishing with:
De Gruyter

Abstract / References

Original Scientific Article

The role of myofibroblasts in granulomatous lymphadenitis in pigs naturally infected  with M. avium subsp. hominissuis
Vladimir Polaček1, Dejan Vidanović2, Biljana Božić1, Žolt Beckei3, Ivana Vučićević4, Jasna Prodanov-Radulović1 , Sanja Aleksić-Kovacević4
1Scientific Veterinary Institute “Novi Sad”, Rumenacki Put 20, 21000 Novi Sad, Serbia
2Veterinary Specialized Institute “Kraljevo”, Zicka 34, 36000 Kraljevo, Serbia
3Department of Animal Husbandry, Faculty of Veterinary Medicine, Belgrade University, Bulevar Oslobodenja 18, 11000 Belgrade, Serbia
4Department of Pathology, Faculty of Veterinary Medicine, Belgrade University, Bulevar Oslobodenja 18, 11000 Belgrade, Serbia


The most important morphological characteristic of infections caused by M. avium subsp. hominissuis (MAH) is granuloma formation. The growth of mycobacteria is in accordance with anti-bacterial effector mechanisms of the host within granuloma. The most important cytokines for „orchestrating“the host defense are interferon γ (INF-γ), tumor necrosis factor α (TNF-α) and transforming growth factor β1 (TGF-β1). Myofibroblasts that make up a peripheral layer of granuloma largely express receptors for TGF-β1. This cytokine is believed to affect the induction of myofibroblast proliferation. The aim of this paper is to point out the importance of myofibroblasts in the formation and sustainability of granuloma during natural infection of pigs with M. avium subsp. hominissuis. Examinations have been performed on the samples of Lnn.
jejunales, Lnn. ileocolici and Lnn. colici of 100 pigs with a positive tuberculin skin test. The molecular method confirmed the presence of a genome M. avium subsp. hominissuis. The microscopic examination of lymph node samples stained by the routine hematoxyilin-eosin (HE) method, showed the presence of granulomatous lymphadenitis. The method of double immunohistochemical staining revealed that myofibroblasts which express TGF-β1 receptor type I (TGF-β1RI) and α smooth muscle actin (α SMA) have an important role in the morphogenesis of granulomatous lymphadenitis in pigs infected with MAH.
Key words: Mycobacterium avium subsp. hominissuis, granuloma, myofibroblast, TGF-β1, TGF-β1RI

Mac Vet Rev 2017; 41 (1): i-vii
[ PDF Free Article ] pdf Linija          
Available Online First: 9 December 2017

1. Inderlied, C.B., Kemper, C.A., Bermudez, L.E. (1993). The Mycobacterium avium complex. Clin Microbiol Rev.6 (3): 266–310.
PMid:8358707 PMCid:PMC358286

2. Johansen, T., Agdestein, A., Olsen, I., Nilsen, S., Holstad, G., Djønne, B., et al. (2009). Biofilm formation by Mycobacterium avium isolates originating from humans, swine and birds. BMC Microbiol. 9(1): 159.
PMid:19660141 PMCid:PMC2741467

3. Agdestein, A., Olsen, I., Jørgensen, A., Djønne, B., Johansen, T.B. (2014). Novel insights into transmission routes of Mycobacterium avium in pigs and possible implications for human health. Vet Res. 45, 46.
PMid:24742183 PMCid:PMC4021465

4. Bezos, J., Álvarez-Carrión, B., Rodríguez-Bertos, A., Fernández-Manzano, Á., de Juan, L., Huguet, C., et al. (2016). Evidence of disseminated infection by Mycobacterium avium subspecies hominissuis in a pet ferret (Mustela putorius furo). Research in Veterinary Science 109, 52-55.

5. Matlova, L., Dvorska, L., Ayele, W.Y., Bartos, M., Amemori, T., Pavlik, I. (2005). Distribution of Mycobacterium avium complex isolates in tissue samples of pigs fed peat naturally contaminated with mycobacteria as a supplement. J Clin Microbiol. 43(3): 1261–1268.
PMid:15750094 PMCid:PMC1081227

6. Biet, F., Boschiroli, M.L. (2014). Non-tuberculous mycobacterial infections of veterinary relevance. Res Vet Sci. 97, S69–77.

7. Polaček, V., Aleksić-Kovačević, S. (2016). Mycobacteriosis in pigs – an underrated threat. Acta Vet Beograd. 66(4): 429–443.

8. Pate, M., Zdovc, I., Pirs, T., Krt, B., Ocepek, M. (2004). Isolation and characterisation of Mycobacterium avium and Rhodococcus equi from granulomatous lesions of swine lymph nodes in Slovenia. Acta Vet Hung. 52(2): 143–150.

9. Agdestein, A., Johansen, T.B., Kolbjørnsen, Ø., Jørgensen, A., Djønne, B., Olsen, I. (2012). A comparative study of Mycobacterium avium subsp. avium and Mycobacterium avium subsp. hominissuis in experimentally infected pigs. BMC Vet Res. 8(1): 11.
PMid:22284630 PMCid:PMC3296603

10. Saunders, B.M., Britton, W.J. (2007). Life and death in the granuloma: immunopathology of tuberculosis. Immunol Cell Biol. 85(2): 103–111.

11. Wangoo, A., Johnson, L., Gough, J., Ackbar, R., Inglut, S., Hicks, D., et al. (2005). Advanced granulomatous lesions in Mycobacterium bovis-infected cattle are associated with increased expression of type I procollagen,  (WC1+) T cells and CD 68+ cells. J Comp Pathol. 133(4): 223–234.

12. Miković, R., Knežević, A., Milić, N., Krnjaić, D., Radojičić, M., Veljović, L., et al. (2016). Molecular detection of pseudorabies virus (PrV), porcine parvovirus (PPV) and porcine circovirus 2 (PCV2) in swine in Republic of Montenegro. Acta Vet Beograd. 66(3): 347–358.

13. Lukač, B., Knežević, A., Milić, N., Krnjaić, D., Veljović, L., Milićević, V., et al. (2016). Molecular detection of PCV2 and PPV in pigs in Republic of Srpska, Bosnia and Herzegovina. Acta Vet Beograd. 66(1): 51–60.

14. Veldhoen, M., Hocking, R.J., Flavell, R.A., Stockinger, B. (2006). Signals mediated by transforming growth factor-β initiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat Immunol. 7(11): 1151–1156.

15. Agdestein, A., Johansen, T.B., Polaček, V., Lium, B., Holstad, G., Vidanović, D., et al. (2011). Investigation of an outbreak of mycobacteriosis in pigs. BMC Vet Res. 7, 63.
PMid:22014189 PMCid:PMC3215643

16. Birkness, K., Guarner, J., Sable, S.B., Tripp, R., Kellar, K.L., Bartlett, J., et al. (2007). An in vitro model of the leukocyte interactions associated with granuloma formation in Mycobacterium tuberculosis infection. Immunol Cell Biol. 85(2): 160–168.

17. Hibiya, K., Kasumi, Y., Sugawara, I., Fujita, J. (2008). Histopathological classification of systemic Mycobacterium avium complex infections in slaughtered domestic pigs. Comp Immunol Microbiol Infect Dis. 31(4): 347–366.

18. Fujita, J., Ohtsuki, Y., Suemitsu, I., Yamadori, I., Shigeto, E., Shiode, M, et al. (2002). Immunohistochemical distribution of epithelioid cell, myofibroblast, and transforming growth factor-beta1 in the granuloma caused by Mycobacterium avium intracellulare complex pulmonary infection. Microbiol Immunol. 46(2): 67–74.

19. Kaarteenaho-Wiik, R., Sademies, O., Pääkkö, P., Risteli, J., Soini, Y. (2007). Extracellular matrix proteins and myofibroblasts in granulomas of sarcoidosis, atypical mycobacteriosis, and tuberculosis of the lung. Hum Pathol. 38(1): 147–153.

20. Polaček, V., Vidanović, D., Vasković, N., Knežević, M., Gledić, D., Aleksić-Kovačević, S., et al. (2010). Distribution of myofibroblasts, transforming growth factor-β1 and transforming growth factor-β1 receptor-I in granulomas caused by Mycobacterium avium complex in pigs. J Comp Pathol. 143(4): 326.

21. Cvetkovikj, I., Mrenoshki, S., Krstevski, K., Djadjovski, I., Angjelovski, B., Popova, Z., et al. (2017). Bovine tuberculosis in the republic of Macedonia: Postmortem, microbiological and molecular study in slaughtered reactor cattle. Mac Vet Rev. 40(1): 43–52.





cope This journal is a member of and subscribes to the principles of the Committee on Publication Ethics.
Creative Commons License
The all content of the Journal "Mac Vet Rev", except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.