Sample menu:

Macedonian Veterinary Review

logo

p-ISSN 1409-7621
e-ISSN 1857-7415

line
Co-publishing with:
line
 
De Gruyter
line
Membership
line
cope
line
crossref
line
linked
line
crosref1
line
ithenticate
line
 

Abstract / References


Linija
Original Scientific Article
 
access
 

Pulsed-field gel electrophoresis used for typing of extended-spectrum-β-lactamases- producing Escherichia coli Isolated from infant ҆ s respiratory and digestive system
Gorica Popova1, Dean Jankuloski2, Benjamin Felix3, Katerina Boskovska4, Biljana Stojanovska - Dimzovska5, Velibor Tasic6, Katerina Blagoevska2
1Department of Clinical Microbiology, Institute for Respiratory Diseases in Children, Skopje, Republic of Macedonia
2Department of Molecular Microbiology, Faculty of Veterinary Medicine, Food Institute,University Ss Cyril and Methodius in Skopje
3French Agency for Food, Environmental and Occupational Health and Safety, Laboratory for Food Safety, Paris, France
4Pediatric Department, Institute for Respiratory Diseases in Children, Skopje, Republic of Macedonia
5Department of Microbiology, Faculty of Veterinary Medicine, Food Institute, University Ss Cyril and Methodius in Skopje
6Nephrology Department, University Children, s Hospital, Skopje, Republic of Macedonia

 

ABSTRACT
Escherichia coli infections are becoming increasingly difficult to treat because of emerging antimicrobial resistance, mostly to expanded-spectrum cephalosporins, due to the production of extended-spectrum β-lactamases (ESBLs).Despite extensive studies of ESBL- producing E.coli in adult patients, there is a lack of information about the epidemiology and spread of ESBL organisms in pediatric population. The aim of this study was to examine the gastrointestinal tract as an endogenous reservoir for the respiratory tract colonization with ESBL- E. coli in children, hospitalized because of the severity of the respiratory illness. The study group consists of 40 children with ESBL-producing E. coli strains isolated from the sputum and from the rectal samples. A control group of 15 E. coli isolated from rectal swabs of healthy children were included in the analysis. The comparison of the strains was done by using antimicrobial susceptibility patterns of the stains, and pulsed field gel electrophoresis was performed for molecular typing, using XbaI digestion. 90% of the compared pairs of strains in the study group were with identical antimicrobial susceptibility patterns and indistinguishable in 79.2% by the obtained PFGE – profiles.33.3% (5/15) of confirmed E. coli strains from the control group were found to be ESBL – producers. Resulting band profiles of all isolates demonstrated presence of 12 pulsotypes, with 100% similarity within the pulsotypes. Although, some isolates obtained from different patients were genetically indistinguishable, these strains were not hospital acquired, as none of the patients satisfied the criteria for hospital acquired pneumonia, and there was a lack of an obvious transmission chain. All ESBL –E. coli isolated from sputum in clinical cases were obtained from patients under the age of one. According to the resistance profile of the compared pairs and the PFGE comparison of all isolates, it can be concluded that the gastrointestinal tract is the main reservoir of ESBL-E. coli. Small age in infants is a risk factor for translocation of bacteria, enabling the colonization of the respiratory tract.
Key words: ESBL-producing Escherichia coli, resistance profile, GUT colonization, PFGE- typing

Mac Vet Rev 2018; 41 (2): i-ix
   
[ PDF Free Article ] pdf Linija          
Available Online First: 31 May 2018
 
 
Linija
References
 
 
 

1. Akil, I., Yilmaz, O., Kuruepe, S., Deqwrli, K., Kavukcu, S. (2006). Influence of oral intake of Saccharomyces boulardii on Escherichia coli in enteric flora. Pediatr Nephrol 21, 807-810.
https://doi.org/10.1007/s00467-006-0088-4
PMid:16703374

2. Backhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A., Gordon, J.I. (2005). Host bacterial mutualism in the human intestine. Science 307, 1915-1920.
https://doi.org/10.1126/science.1104816
PMid:15790844

3. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464 (7285): 59-65.
https://doi.org/10.1038/nature08821
PMid:20203603 PMCid:PMC3779803

4. Penders, J., Thijs, C., Vink, C., Stelma, F.F., Snijders, B., Kummeling, I., van den Brandt, P.A., Stobberingh, E.E. (2006). Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118 (2): 511-521.
https://doi.org/10.1542/peds.2005-2824
PMid:16882802

5. Jernberg, C., Lofmark, S., Edlund, C., Jansson, J.K. (2010). Long – term ecological impacts of antibiotic administration on the human intestinal microbiota. Microbiology 156, 3216-3223.
https://doi.org/10.1099/mic.0.040618-0
PMid:20705661

6. de la Cochetiere, M.F., Durand, T., Lepage, P., Bourreille, A., Galmiche, J.P., Dore, J. (2005). Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J Clin Microbiol 43, 5588-5592.
https://doi.org/10.1128/JCM.43.11.5588-5592.2005
PMid:16272491 PMCid:PMC1287787

7. Perez-Cobas, A.E., Gosalbes, M.J., Friedrichs, A., Knecht, H., Artacho, A., Eismann, K., et al. (2013). Gut microbiota disturbance during antibiotic therapy: a multi-omic approach. Gut 62, 1591-1601.
https://doi.org/10.1136/gutjnl-2012-303184
PMid:23236009 PMCid:PMC3812899

8. Paterson, L.D., Bonomo, A.R. (2005). Extended spectrum beta lactamases: a clinical update. Cli Microbiol Rev. 18(4): 657-686.
https://doi.org/10.1128/CMR.18.4.657-686.2005
PMid:16223952 PMCid:PMC1265908

9. Bush, K., Jacoby, G.A. (2010). Update functional classification sheme of β – lactamases. Antimicrob Agents Chemother. 54(3): 969-976.
https://doi.org/10.1128/AAC.01009-09
PMid:19995920 PMCid:PMC2825993

10. Philippon, A., Labia, R., Jacoby, G. (1989). Extended-spectrum β-lactamases.Antimicrob Agents Chemother. 33, 1131–1136.
https://doi.org/10.1128/AAC.33.8.1131

11. Srivastava, A., Singhal, N., Goel, M., Virdi, J.S., Kumar, M. (2014). CBMAR: a comprehensive β-lactamase molecular annotation resource. Database (Oxford). 2014: bau111
https://doi.org/10.1093/database/bau111
PMid:25475113 PMCid:PMC4255060

12. Bonnet, R. (2004). Growing group of extended spectrum: the CTX-M enzymes. Antimicrob Agent Chemother 48, 1-14
https://doi.org/10.1128/AAC.48.1.1-14.2004
PMCid:PMC310187

13. Lewis, J.S., Herrera, M., Wickes, B., Patterson, J.E., Jorgensen, J.H. (2007). First report of the emergence of CTX-M-type extended-spectrum β-lactamases (ESBLs) as the predominant ESBL isolated in a U.S. Health Care System. Antimicrob Agents Chemother. 51(11): 4015-4021.
https://doi.org/10.1128/AAC.00576-07
PMid:17724160 PMCid:PMC2151438

14. Alobwede, I., Mzali, F.H., Livermore, D.M., Hentige, J., Todd, N., Hawkey, P.M. (2003). CTX-M extended-spectrum beta-lactamases arrives in UK. J Antimicrob Chemother. 51. 470-471.
https://doi.org/10.1093/jac/dkg096
PMid:12562729

15. Mendonça, N., Ferreira, E., Louro, D., ARSIP Participants, Caniça, M. (2009). Molecular epidemiology and antimicrobial susceptibility of extended- and broad-spectrum beta-lactamase-producing Klebsiella pneumoniae isolated in Portugal. Int J Antimicrob Agents 34(1): 29-37.
https://doi.org/10.1016/j.ijantimicag.2008.11.014
PMid:19272757

16. Kiratisin, P., Apisarnthanarak, A., Laesripa, C., Saifon, P. (2008). Molecular characterization and epidemiology of extended-spectrum-beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates causing health care-associated infection in Thailand, where the CTX-M family is endemic. Antimicrob Agents Chemother. 52(8): 2818-2824.
https://doi.org/10.1128/AAC.00171-08
PMid:18505851 PMCid:PMC2493136

17. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 4.0, 2014. http://www.eucast.org.

18. The EUCAST subcommittee for detection of resistance mechanisms and specific resistance of clinical and/or epidemiological importance. EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance.Version 1.0, 2013. http://www.eucast.org.

19. Ribot, E.M., Fair, M.A., Gautom, R., Cameron, D.N., Hunter, S.B., Swaminathan, B., Barrett, T.J. (2006). Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog Dis. 3(1): 59-67.
https://doi.org/10.1089/fpd.2006.3.59
PMid:16602980

20. Caprioli, A., Maugliani, A., Michelacci, V., Morabito, S. (2014). Molecular typing of Verocytotoxin - producing E. coli (VTEC) strains isolated from food, feed and animals : state of play and standard operating procedures for pulsed field gel electrophoresis (PFGE) typing, profiles interpretation and curation. EFSA journal EN704, 55.

21. Barrett, T.J., Gerner-Smidt, P., Swaminathan, B. (2006). Interpretation of pulsed-field gel electrophoresis patterns in foodborne disease investigations and surveillance. Foodborne Pathog Disl. 3(1): 20-31.
https://doi.org/10.1089/fpd.2006.3.20
PMid:16602976

22. Peters, T.M., Maguire, C., Threlfall, E.J., Fisher, I.S., Gill, N., Gatto, A.J. (2003). The Salm-gene project - a European collaboration for DNA fingerprinting for food-related salmonellosis. Euro Surveill. 8, 46-50.
https://doi.org/10.2807/esm.08.02.00401-en
PMid:12631975

23. Winokur, P.L., Cantón, R., Casellas, J.M., Legakis, N. (2001). Variations in the prevalence of strains expressing an extended-spectrum β-lactamase phenotype and characterization of isolates from Europe, the Americas, and the Western Pacific region. Clin Infect Dis. 32, 94–103.
https://doi.org/10.1086/320182
PMid:11320450

24. Pitout, J.D., Hanson, N.D., Church, D.L., Laupland, K.B. (2004). Population-based laboratory surveillance for Escherichia coli-producing extended-spectrum β-lactamases: importance of community isolates withblaCTX-M genes. Clin Infect Dis. 38, 1736–1741.
https://doi.org/10.1086/421094
PMid:15227620

25. Ben-Ami, R., Schwaber, M.J., Navon-Venezia, S., Schwartz, D., Giladi, M., Chmelnitsky, I., Leavitt, A., Carmeli, Y. (2006). Influx of extended-spectrum β-lactamase-producing Enterobacteriaceae into the hospital. Clin Infect Dis. 42, 925–934.
https://doi.org/10.1086/500936
PMid:16511754

26. Chandramohan, L., Revell, P.A. (2012). Prevalence and molecular characterization of extended-spectrum-β-lactamase-producing enterobacteriaceae in a pediatric patient population. Antimicrobial Agents and Chemotherapy 56(9): 4765-4770.
https://doi.org/10.1128/AAC.00666-12
PMid:22733062 PMCid:PMC3421901

27. Mitchella, D.J., Mc Clurea, B.G., Tubmanb, T.R.J. (2001). Simultaneous monitoring of gastric and oesophageal pH reveals limitations of conventional oesophageal pH monitoring in milk fed infants. Arch Dis Child. 84, 273-276.
https://doi.org/10.1136/adc.84.3.273
PMCid:PMC1718697

28. Orozco-Levi, M., Torres, A., Ferrer, M., Piera, C., El-Ebiary, M., de la Bellacasa, J.P., Rodriguez-Roisin, R. (1995). Semirecumbent position protects from pulmonary aspiration but not completely from gastroesophageal re- flux in mechanically ventilated patients. Am J Respir Crit Care Med. 152, 1387–1390.
https://doi.org/10.1164/ajrccm.152.4.7551400
PMid:7551400

29. Davis, K.J., Johannigman, J.A., Campbell, R.S., Marraccini, A., Luchette, F.A., Frame, S.B., Branson, R.D. (2001). The acute effects of body position strategies and respiratory therapy in paralyzed patients with acute lung injury. Crit Care. 5, 81–87.
https://doi.org/10.1186/cc991
PMid:11299066 PMCid:PMC30713

30. Drakulovic, M.B., Torres, A., Bauer, T.T., Nicolas, J.M., Nogue, S., Ferrer, M. (1999). Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients: a randomised trial. Lancet 354, 1851–1858.
https://doi.org/10.1016/S0140-6736(98)12251-1

31. Pingleton, S.K., Hinthorn, D.R., Liu, C. (1986). Enteral nutrition in patients receiving mechanical ventilation: multiple sources of tracheal colonization include the stomach. Am J Med. 80, 827–832.
https://doi.org/10.1016/0002-9343(86)90623-6

32. Tablan, O.C., Anderson, L.J., Besser, R., Bridges, C., Hajjeh, R., Healthcare Infection Control Practices Advisory Committee, Centers for Disease Control and Prevention. (2004). Guidelines for preventing health-care–associated pneumonia, 2003: recommendations of the CDC and the Healthcare Infection Control Practices Advisory Committee. MMWR Recomm Rep 53(RR-3):1–36.
PMid:15048056

33. Prosperi, M., Veras, N., Azarian, T., Rathore, M., Nolan, D., Rand, K., Cook, R.L., Johnson, J., Morris, J.G., Salemil, M. (2013). Molecular epidemiology of community-associated methicillin-resistant Staphylococcus aureus in the genomic era: a cross-sectional study. Sci Rep 3: 1902
https://doi.org/10.1038/srep01902
PMid:23712667 PMCid:PMC3664956

34. Tschudin-Sutter, S., Frei, R., Dangel, M., Strauden A., Widmer, A.T. (2012). Rate of Transmission of Extended-Spectrum Beta-Lactamase–Producing Enterobacteriaceae Without Contact Isolation. Clin Infect Dis 55 (11): 1505-1511.
https://doi.org/10.1093/cid/cis770
PMid:22955436

35. Jain, R., Kralovic, S.M., Evans, M.E., Ambrose, M., Simbartl, L.A., Obrosky, D.S., Render, M.L., Freyberg, R.W., Jarnigan, J.A., Muder, R.R., and others. (2011). Veterans Affairs initiative to prevent methicillin-resistant Staphylococcus aureus infections. N Engl J Med 364:1419-30.
https://doi.org/10.1056/NEJMoa1007474
PMid:21488764

36. Ostrowsky, B.E., Trick, W.E., Sohn, A.H., Quirk, S.B., Holt, S., Carson, L.A., Hill, B.C., Arduino, M.J., Kuehnert, M.J., Jarvis, W.R. (2001). Control of vancomycin-resistant enterococcus in health care facilities in a region. N Engl J Med 344: 1427-1433.
https://doi.org/10.1056/NEJM200105103441903
PMid:11346807

 
 
Linija

 

 

 

lc
cope This journal is a member of and subscribes to the principles of the Committee on Publication Ethics.
crossref
CrosCheck
lc
Creative Commons License
The all content of the Journal "Mac Vet Rev", except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.
iThenticate
lc