Sample menu:

Macedonian Veterinary Review


p-ISSN 1409-7621
e-ISSN 1857-7415

Co-publishing with:
De Gruyter

Abstract / References

Original Scientific Article
Published on: 15 October 2018

Different dynamics of sensory-motor development and behavior during the transitional period in puppies: Preliminary results
Federica Pirrone1, Ludovica Pierantoni2, Valerio Albizzati1, Mariangela Albertini1
1Department of Veterinary Medicine, University of Milan, via Celoria 10, 20133 Milan, Italy
2CAN (Comportamento Animale Napoli) s.s.d.r.l., Naples, Italy


Many studies have analyzed the behavior of puppies during their socialization period, while little attention has been paid to the transitional period, when vision and hearing develop. Here, we compared the average age of sensory and motor development, and the behavior among a total of 25 puppies. Each litter was videotaped during 1-hour daily sessions on postnatal days 10-21 and coded for the following mutually exclusive behavioral categories: sleeping, suckling and moving. The moving category included side-to-side head swinging, exploring, rolling and allogrooming. The opening of the eyelids, appearance of the startle response and ability to stand up with either the front or hind legs were identified. The duration and frequency of puppy behaviors varied significantly with breed and season of birth. Breed and gender differences in gross motor and sensory development were also observed. These findings may turn out to be crucial to enhance the welfare, standards of rearing, and behavioral interventions aimed at improving adaptability to novel stimuli in pet dogs.
Key words: behavior, development, transitional period, puppies, dog

Mac Vet Rev 2018; 41 (2): 153-161
[ PDF Free Article ] pdf Linija          
Available Online First: 7 July 2018

1. Virués-Ortega, J., Buela-Casal, G. (2006). Psychophysiological effects of human-animal interaction: theoretical issues and long-term interaction effects. J Nerv Ment Dis. 194 (1): 52-57.

2. Kubinyi, E., Turcsán, B., Miklósi, Á. (2009). Dog and owner demographic characteristics and dog personality trait associations. Behav Processes. 81(3): 392–401.

3. Pirrone, F., Pierantoni, L., Mazzola, S.M., Vigo, D., Albertini, M. (2015). Owner and animal factors predict incidence of, and owner reaction towards, problem behaviors in companion dogs. J Vet Behav: Clin Appl Res. 10, 295-301.

4. Marchant-Forde, J.N. (2015). The science of animal behavior and welfare: challenges, opportunities, and global perspective. Front Vet Sci. 2, 16.
PMid:26664945 PMCid:PMC4672293

5. Plomin, R., Asbury, K. (2005). Nature and nurture: Genetic and environmental influences on behaviour. Ann Am Acad Pol Soc Sci. 600, 86-98.

6. Overall, K.L. (2013). Canine behavior. Normal canine behavior and ontogeny: neurological and social development, signaling and normal canine behaviors. In: Elsevier (Ed.), Manual of clinical behavioral medicine for dogs and cats. First Ed. (pp. 123-128).  Mosby Year Book, Inc., St. Louis, Missouri.

7. Scott, J., Fuller, J. (1965). Genetics and the social behavior of the dog. University of Chicago Press, Chicago, IL.

8. Uzunova, K., Stoyanchev, K., Semerdzhiev, V., Rusenov, A., Penchev, I., Kostov, D. (2007). Study on the behaviour of puppies with regard to their socialization. Trakia J Sci. 5(3-4): 12-15.

9. Houpt, K.A. (2011). Development of Behavior. In: Blackwell Publishing (Ed.), Domestic animal behavior for veterinarians and animal scientists. Fifth Edition. (p. 416). John Wiley & Sons, New York.

10. Case, L.P. (2013). Developmental Behavior: Puppy to Adult. In: Blackwell Publishing (Ed.), The dog: Its behavior, nutrition, and healt. Second Edition. Chapter 7. Iowa State University Press.

11. Bateson, P. (1979). How do sensitive periods arise and what are they for? Anim Behav 27, 470-486.

12. King, A.J., Carlile, S. (1993). Changes induced in the representation of auditory space in the superior colliculus by rearing ferrets with binocular eyelid suture. Exp Brain Res. 94, 444–455.

13. Wallace, M.T., Stein, B.E. (2007). Early experience determines how the senses will interact. J Neurophysiol. 97, 921–926.

14. Blackwell, E.J., Casey, R.A., Bradshaw J.W.S. (2003). The assessment of shelter dogs to predict separation-related behaviour and the validation of advice to reduce its incidence post-homing. (p. 4). Horsham, UK: RSPCA.

15. Lickliter, R. (2005). Prenatal sensory ecology and experience: Implications for perceptual and behavioral development in precocial birds. Adv Study Behav. 35, 235–274.

16. Lickliter, R. (2011). The integrated development of sensory organization. Clin Perinatol. 38(4): 591–603.
PMid:22107892 PMCid:PMC3223372

17. Garland, E., Howard, M.O. (2009). Neuroplasticity, Psychosocial genomics, and the biopsychosocial paradigm in the 21st century. Health & Social Work. 34(3): 191–199.
PMid:19728478 PMCid:PMC2933650

18. E.N.C.I., the Italian Kennel Club. (2015). The dog breeder code of ethics. Available at: Accessed October 29, 2015.

19. Battaglia, C.L. (2009). Periods of early development and the effects of stimulation and social experiences in the canine. J Vet Behav: Clin Appl Res. 4(5): 203-210.

20. Gazzano, A., Mariti, C., Notari, L., Sighieri, C., McBride, E.A. (2008). Effects of early gentling and early environment on emotional development of puppies. Appl Anim Behav Sci. 110, 294-304.

21. Fox, M.W. (1968). Methods of animal experimentation. III (2):37-73. Elsevier Inc.

22. Landis, J.R., Koch, G.G. (1975). A review of statistical methods in the analysis of data arising from observer reliability studies (Part II). Stat Neerlandica 29(4):151-161.

23. Scott, J.P. (1958). Critical periods in the development of social behavior in puppies. Psychosom Med XX (1): 1-13.

24. Luescher, U.A. (2012). Canine behavioral development. Based on a chapter published in Peterson, ME, Kutzler MA (eds): Small Animal Pediatrics. St. Louis, 2011, Elsevier.

25. Makrides, M., Neumann, M.A., Gibson, R.A. (2001). Perinatal characteristics may influence the outcome of visual acuity. Lipids 36 (9): 897-900.

26. Malcolm, C., McCulloch, D.L., Shepherd, A. (2002). Pattern-reversal visual evoked potentials in infants: gender differences during early visual maturation. Dev Med and Child Neurol. 44 (5): 345-351.

27. Alexander, G.M., Wilcox, T. (2012). Sex differences in early infancy. Child Dev Perspect. 6 (4): 400–406.

28. Lickliter, R., Bahrick, L.E., Markham, R.G. (2006). Intersensory redundancy educates selective attention in bobwhite quail embryos. Dev Sci. 9(6): 604–615.
PMid:17059458 PMCid:PMC1813927

29. Lickliter, R., Bahrick, L.E., Honeycutt, H. (2004). Intersensory redundancy enhances memory in bobwhite quail embryos. Infancy 5(3): 253–69.

30. Bach, J., Lüpke, M., Dziallas, P., Wefstaedt, P., Uppenkamp, S., Seifert, H., Nolte, I. (2016). Auditory functional magnetic resonance imaging in dogs – normalization and group analysis and the processing of pitch in the canine auditory pathways. BMC Vet Res. 12, 32.
PMid:26897016 PMCid:PMC4761139

31. Hansen, A., Wei, S. (2014). Acoustic startle response affected by aging and cholinergic neurotransmitters. J Otol. 9(2): 73-80.

32. Phillips-Silver, J., Trainor, L.J. (2007). Hearing what the body feels: auditory encoding of rhythmic movement. Cognition 105(3): 533-546.

33. Ejiri, K., Masataka, N. (2001). Co-occurrence of preverbal vocal behavior and motor action in early infancy. Dev Sci. 4, 40–48.

34. Ferronato, P.A.M., Domellöf, E., Rönnqvist, L. (2014). Early influence of auditory stimuli on upper-limb movements in young human infants: an overview. Front Psychol. 5, 1043.
PMid:25278927 PMCid:PMC4166959

35. Korner, A., Zeanah, C., Linden, J., Berkowitz, R., Kramer, H., Agras, W. (1985). The relationship between neonatal and later activity and temperament. Child Dev. 56, 38–42.

36. Kretch, K.S., Franchak, J.M., Adolph, K.E. (2014). Crawling and walking infants see the world differently. Child Dev. 85(4): 1503–1518.
PMid:24341362 PMCid:PMC4059790

37. Adolph, K.E., Tamis-LeMonda, C.S. (2014). The costs and benefits of development: the transition from crawling to walking. Child Dev Perspect. 8(4): 187-192.
PMid:25774213 PMCid:PMC4357016

38. Dusing, S.C., Harbourne, R.T. (2010). Variability in postural control during infancy: implications for development, assessment, and intervention. Phys Ther. 90(12): 1838-1849.
PMid:20966208 PMCid:PMC2996511

39. Adolph, K.E., Robinson, S.R. (2015). Motor development. In: L. S. Liben, U. Mueller, & R. M. Lerner (Eds.), Handbook of child psychology and developmental science, Volume 2, Cognitive processes (pp.113-157). John Wiley & Sons,  New York.

40. Dienske, H., Van Vreeswijk, W. (1987). Regulation of nursing in chimpanzees. Dev Psychobiol. 20(1): 71–83.





cope This journal is a member of and subscribes to the principles of the Committee on Publication Ethics.
Creative Commons License
The all content of the Journal "Mac Vet Rev", except where otherwise noted, is licensed under a Creative Commons Attribution 4.0 License.