ORIGINAL_ARTICLE
Effect of silver nanoparticles on healing of third-degree burns infected with pseudomonas aeruginosa in laboratory mice
The treatment of full-thickness skin burn using nanomaterials is promising as a medical application reducing the risk of infection and severe dermal scarring. Therefore, this study aims to evaluate the effectiveness of nanomaterials, particularly 3% silver nanoparticles containing ointment (3% SNO), on the full-thickness skin burn of laboratory mice. A total number of 36 male mice were used, equally divided into three groups: negative control (not burned and not treated); positive control (+ve) (burned and treated with castor oil and white petroleum jelly); and SNO-treated group (burned and treated with 3% SNO). The skin of the animals’ back was shaved. A 2x0.5 cm metal plate was heated on a burner to burn the skin of the animals of positive control and SNO-treated groups. Pseudomonas aeruginosa bacterial suspension was applied to the burnt area. The application of SNO, as well as the mixture of white petroleum jelly and castor oil, was started after 6 hours of inducing burns and continued for 14 days (three times daily) in the respected groups. The SNO-treated group showed accelerated healing within 14 days demonstrated by re-epithelialization of the epidermal layer and proliferation of the fibroblasts in the dermal layer. Less healing evidence was observed in the +ve control group in the same period. In conclusion, to our knowledge, this is the first study that uses a 3% SNO formula and has found that it has a promising impact on the treatment of infected skin burns.
https://macvetrev.mk/Files/Article/2021/10.2478/macvetrev-2020-0032/macvetrev-2020-0032.pdf
2021-03-15T09:00:00
17
28
10.2478/macvetrev-2020-0032
silver nanoparticles
skin burns
silver ointment
skin healing
infected burns
Mukhallad
Abdul
Kareem Ramadhan
mukalad.mcm@uomisan.edu.iq
false
1
Department of Pathology, College of Medicine, University of Misan, Misan, Iraq
LEAD_AUTHOR
Abbas
Najee
Balasm
false
2
Department of Pathology, College of Medicine, University of Misan, Misan, Iraq
AUTHOR
Sanaa
Basheer
Kadhm
false
3
Department of Microbiology, College of Medicine, University of Misan, Misan, Iraq
AUTHOR
Haider
Faleh
Al-Saedi
false
4
Department of Pharmacology and Toxicology, College of Pharmacy, University of Al-Ameed, Karbala, Iraq
AUTHOR
Zhou, E.H., Watson, C., Pizzo, R., Cohen, J., Dang, Q., Ferreira de Barros, P.M., Park, C.Y., et al. (2014). Assessing the impact of engineered nanoparticles on wound healing using a novel in vitro bioassay. Nanomedicine (Lond.). 9(18): 2803-2815. PMid:24823434 PMCid:PMC4684260
1
10.2217/nnm.14.40
McLaughlin, S., Podrebarac, J., Ruel, M., Suuronen, E.J., McNeill, B., Alarcon, E.I. (2016). Nano-engineered biomaterials for tissue regeneration: what has been achieved so far? Front. Mater. 3, 27.
2
10.3389/fmats.2016.00027
Jain, J., Arora, S., Rajwade, J.M., Omray, P., Khandelwal, S., Paknikar, K.M. (2009). Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Mol Pharm. 6(5): 1388-1401. PMid:19473014
3
10.1021/mp900056g
Rigo, C., Ferroni, L., Tocco, I., Roman, M., Munivrana, I., Gardin, C., Cairns, W.R., et al. (2013). Active silver nanoparticles for wound healing. Int J Mol Sci. 14(3): 4817-4840. PMid:23455461 PMCid:PMC3634485
4
10.3390/ijms14034817
Klasen, H.J. (2000). A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver. Burns 26(2): 131-138.
5
10.1016/S0305-4179(99)00116-3
Klasen, H.J. (2000). Historical review of the use of silver in the treatment of burns. I. Early uses. Burns 26(2): 117-130.
6
10.1016/S0305-4179(99)00108-4
Hussain, S., Ferguson, C. (2006). Best evidence topic report. Silver sulphadiazine cream in burns. Emerg Med J. 23(12): 929-932. PMid:17130603 PMCid:PMC2564257
7
10.1136/emj.2006.043059
Okan, D., Woo, K., Sibbald, R.G. (2007). So what if you are blue? Oral colloidal silver and argyria are out: safe dressings are in. Adv Skin Wound Care. 20(6): 326-330. PMid:17538258
8
10.1097/01.ASW.0000276415.91750.0f
Cutting, K., White, R., Edmonds, M. (2007). The safety and efficacy of dressings with silver - addressing clinical concerns. Int Wound J. 4(2): 177-184. PMid:17651232
9
10.1111/j.1742-481X.2007.00338.x
Fong, J., Wood, F. (2006). Nanocrystalline silver dressings in wound management: a review. Int J Nanomedicine. 1(4): 441-449. PMid:17722278 PMCid:PMC2676636
10
10.2147/nano.2006.1.4.441
Burd, A., Kwok, C.H., Hung, S.C., Chan, H.S., Gu, H., Lam, W.K., Huang, L. (2007). A comparative study of the cytotoxicity of silver-based dressings in monolayer cells, tissue explants, and animal models. Wound Repair Regen. 15(1): 94-104. PMid:17244325
11
10.1111/j.1524-475X.2006.00190.x
Tegos G.P., Demidova T.N., Arcila-Lopez D., Lee H., Wharton T., Gali H., Hamblin, M.R. (2005). Cationic fullerenes are effective and selective antimicrobial photosensitizers. Chem Biol. 12(10): 1127-1135. PMid:16242655 PMCid:PMC3071678
12
10.1016/j.chembiol.2005.08.014
Robins, E.V. (1990). Burn shock. Crit Care Nurs Clin North Am. 2(2): 299-307.
13
10.1016/S0899-5885(18)30830-X
Dai, T., Huang, Y.Y., Sharma, S.K., Hashmi, J.T., Kurup, D.B., Hamblin, M.R. (2010). Topical antimicrobials for burn wound infections. Recent Pat Antiinfect Drug Discov. 5(2): 124-151. PMid:20429870 PMCid:PMC2935806
14
10.2174/157489110791233522
Hendi, A. (2011). Silver nanoparticles mediate differential responses in some of liver and kidney functions during skin wound healing. J King Saud Uni. 23(1): 47-52.
15
10.1016/j.jksus.2010.06.006
Cordeiro, M.F. (2002). Beyond mitomycin: TGF-beta and wound healing. Prog Retin Eye Res. 21(1): 75-89.
16
10.1016/S1350-9462(01)00021-0
Adhya, A., Bain, J., Ray, O., Hazra, A., Adhikari, S., Dutta, G., Ray, S., Majumdar, B.K. (2014). Healing of burn wounds by topical treatment: A randomized controlled comparison between silver sulfadiazine and nano-crystalline silver. J Basic Clin Pharm. 6(1): 29-34. PMid:25538469 PMCid:PMC4268627
17
10.4103/0976-0105.145776
Tian, J., Wong, K.K., Ho, C.M., Lok, C.N., Yu, W.Y., Che, C.M., Chiu, J.F., Tam, P.K. (2007). Topical delivery of silver nanoparticles promotes wound healing. Chem Med Chem. 2(1): 129-136. PMid:17075952
18
10.1002/cmdc.200600171
Sibbald, R.G., Contreras-Ruiz, J., Coutts, P., Fierheller, M., Rothman, A., Woo, K. (2007). Bacteriology, inflammation, and healing: a study of nanocrystalline silver dressings in chronic venous leg ulcers. Adv Skin Wound Care. 20(10): 549-558. PMid:17906429
19
10.1097/01.ASW.0000294757.05049.85
Nadworny, P.L., Wang, J., Tredget, E.E., Burrell, R.E. (2008). Anti-inflammatory activity of nanocrystalline silver in a porcine contact dermatitis model. Nanomedicine. 4(3): 241-251. PMid:18550449
20
10.1016/j.nano.2008.04.006
Wright, J.B., Lam, K., Buret, A.G., Olson, M.E., Burrell, R.E. (2002). Early healing events in a porcine model of contaminated wounds: effects of nanocrystalline silver on matrix metalloproteinases, cell apoptosis and healing. Wound Rep Regen. 10, 141-151. PMid:12100375
21
10.1046/j.1524-475X.2002.10308.x
Huang, Y., Li, X., Liao, Z., Zhang, G., Liu, Q., Tang, J., Peng, Y., Liu, X., Luo, Q. (2007). A randomized comparative trial between Acticoat and SD-Ag in the treatment of residual burn wounds, including safety analysis. Burns 33(2): 161-166. PMid:17175106
22
10.1016/j.burns.2006.06.020
Saha, A., Kumar Giri, N., Agarwal, S.P. (2017). Silver nanoparticle-based hydrogels of tulsi extracts for topical drug delivery. Int J Ayurveda Pharma Res. 5(1): 17-23.
23
Dandasi, J.D., Jayaprakash, J.S., Kulkarni, P.K., Akhila, A.R., Namratha, S.S. (2020). Formulation and evaluation of different topical dosage forms for wound healing properties. Int J Pharm Sci Res. 1, 10-23.
24
Patel, J., Patel, B., Banwait, H., Parmar, K., Patel, M. (2011). Formulation and evaluation of topical Aceclofenac gel using different gelling agents. Int J Drug Dev & Res. 3(1): 156-164.
25
Mayr-Harting, A., Hedges, A., Berkeley, R. (1972). Methods for studying bactericides. In: Norris, J. R., D. W. Ribbons (Eds.), Methods in Microbiology. Vol. 7A (p. 74). New York: Academic Press.
26
10.1016/S0580-9517(08)70618-4
Tymen, S.D., Rojas, I.G, Zhou, X., Fang, Z.J., Zhao, Y., Marucha, P.T. (2013). Restraint stress alters neutrophil and macrophage phenotypes during wound healing. Brain Behav Immun. 28, 207-217. PMid:22884902 PMCid:PMC3878450
27
10.1016/j.bbi.2012.07.013
Crichton, M.L., Chen, X., Huang, H., Kendall, M.A. (2013). Elastic modulus and viscoelastic properties of full-thickness skin characterized at micro scales. Biomaterials 34(8): 2087-2097. PMid:23261214
28
10.1016/j.biomaterials.2012.11.035
Reed, L.J., Muench, H. (1938). A simple method of estimating fifty percent endpoints. Am J Hyg. 27(3): 493-497.
29
10.1093/oxfordjournals.aje.a118408
Adedapo, A., Babarinsa, O., Oyagbemi, A., Adedapo, A., Omobowale, T. (2016). Cardiotoxicity study of the aqueous extract of corn silk in rats. Mac Vet Rev. 39 (1): 43-49.
30
10.1515/macvetrev-2015-0065
Rance, R.W. (1973). Studies of the factors controlling the action of hair sprays-I: the spreading of hair spray resin solutions on hair. J Soc Cosmet Chem. 24, 501-522.
31
Jones, D.S., Woolfson A.D., Brown A.F. (1997). Texture analysis and flow rheometry of novel, bioadhesive antimicrobial oral gels. Pharm Res. 14(4): 450-457. PMid:9144730
32
10.1023/A:1012091231023
Slistan-Grijalva, A., Herrera-Urbina, R., Rivas-Silva, J.F., Avalos-Borja, M., Castillon-Barraza, F.F., Posada-Amarillas, A. (2005). Classical theoretical characterization of the surface plasmon absorption band for silver spherical nanoparticles suspended in water and ethylene glycol. Physica E. 27, 104-112.
33
10.1016/j.physe.2004.10.014
Shrivastava, S., Bera, T., Roy, A., Singh, G., Ramachandrarao, P., Dash, D. (2007). Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 18, 103-112.
34
10.1088/0957-4484/18/22/225103
Litvin, V.A., Minaev, B.F. (2013). Spectroscopy study of silver nanoparticles fabrication using synthetic humic substances and their antimicrobial activity. Spectrochim Acta A Mol Biomol Spectrosc. 108, 115-122. PMid:23466321
35
10.1016/j.saa.2013.01.049
Heydarnejad, M.S., Rahnama, S., Mobini-Dehkordi, M., Yarmohammadi, P., Aslnai, H. (2014). Silver nanoparticles accelerate skin wound healing in mice (Mus musculus) through suppression of the innate immune system. Nanomed J. 1(2): 79-87.
36
You, C., Li, Q., Wang, X., Wu, P., Ho, J.K., Jin, R., Zhang, L., Shao, H., Han, C. (2017). Silver nanoparticle loaded collagen/chitosan scaffolds promote wound healing via regulating fibroblast migration and macrophage activation. Sci Rep. 7(1): 1-11. PMid:28874692 PMCid:PMC5585259
37
10.1038/s41598-017-10481-0
Chanan-Khan, A., Szebeni, J., Savay, S., Liebes, L., Rafique, N.M., Alving, C.R., Muggia F,M. (2003). Complement activation following first exposure to pegylated liposomal doxorubicin (Doxil): possible role in hypersensitivity reactions. Ann Oncol. 14(9): 1430-1437. PMid:12954584
38
10.1093/annonc/mdg374
Zhang, S., Liu, X., Wang, H., Peng, J., Wong, K.K. (2014). Silver nanoparticle-coated suture effectively reduces inflammation and improves mechanical strength at intestinal anastomosis in mice. J Pediatr Surg. 49(4): 606-613. PMid:24726122
39
10.1016/j.jpedsurg.2013.12.012
Gohel, M.S., Windhaber, R.A., Tarton, J.F., Whyman, M.R., Poskitt, K.R. (2008). The relationship between cytokine concentrations and wound healing in chronic venous ulceration. J Vasc Surg. 48(5): 1272-1277. PMid:18771884
40
10.1016/j.jvs.2008.06.042
Franková, J., Pivodová, V., Vágnerová, H., Juráňová, J., Ulrichová, J. (2016). Effects of silver nanoparticles on primary cell cultures of fibroblasts and keratinocytes in a wound-healing model. J Appl Biomater Funct Mater. 14(2): e137-142. PMid:26952588
41
10.5301/jabfm.5000268