ORIGINAL_ARTICLE
Comparison of diagnostic tests for detection of bovine Rotavirus A
Bovine rotavirus A (BRVA) is a frequent causative agent of diarrhea in neonatal calves. Accurate and rapid diagnosis is crucial to prevent calf mortality from BRVA induced diarrhea. Currently, variety of diagnostic methods are being used to detect BRVA from calves’ feces: antibody-based rapid test and ELISA, and molecular-based RT-PCR and RT-qPCR. The aim of the study was to evaluate the accuracy (sensitivity and specificity) of the rapid test (Immunochromatography), ELISA, and RT-PCR assays, using RT-qPCR as the gold standard, in detection of BRVA in diarrheic calves’ fecal samples. One hundred (n=100) clinically diarrheic fecal samples were tested with four different diagnostic tools. The percent of samples positive by rapid test, ELISA, RT-PCR and RT-qPCR was 10%, 16%, 17%, and 33%, respectively. The agreement between different assays was 75% to 99%. The highest agreement was observed between ELISA and RT-PCR assay (99%). The lowest agreement was recorded (75%) between rapid test and RT-qPCR. The sensitivity of the rapid test, ELISA, and RT-PCR were 30%, 49%, and 52%, respectively when compared to the reference test (RT-qPCR), whereas specificity was 100% for all assays. In conclusion, none of the frequently used diagnostic tests showed a satisfactory level of sensitivity to identify BRVA in calves’ feces. Therefore, the use of a more sensitive rapid test should be used to identify infected calves in field conditions in order to prevent calf mortality from rotaviral diarrhea.
https://macvetrev.mk/Files/Article/2021/10.2478/macvetrev-2020-0033/macvetrev-2020-0033.pdf
2021-03-15T09:00:00
37
45
10.2478/macvetrev-2020-0033
calf feces
diagnostic assays
bovine rotavirus
sensitivity and specificity
Shama
Ranjan
Barua
samardvm27@gmail.com
false
1
Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Zakir Hossain, Chattogram 4225, Bangladesh
LEAD_AUTHOR
Shariful
Islam
false
2
Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Zakir Hossain, Chattogram 4225, Bangladesh
AUTHOR
А.М.А.М. Zonaed
Siddiki
false
3
Animal Health Research Division, Bangladesh Livestock Research Institute (BLRI), Dhaka-1341, Bangladesh & EcoHealth Alliance, New York, NY 10001-2023, USA
AUTHOR
Md
Masuduzzaman
false
4
Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Zakir Hossain, Chattogram 4225, Bangladesh
AUTHOR
Mohammad
Alamgir
Hossain
false
5
Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Zakir Hossain, Chattogram 4225, Bangladesh
AUTHOR
Sharmin
Chowdhury
false
6
Department of Pathology and Parasitology, Chattogram Veterinary and Animal Sciences University, Zakir Hossain, Chattogram 4225, Bangladesh
AUTHOR
Fritzen, J.T., Oliveira, M.V., Lorenzetti, E., Alfieri, A.F., Alfieri, A.A. (2020). Genotype constellation of a rotavirus A field strain with an uncommon G8P [11] genotype combination in a rotavirus vaccinated dairy cattle herd. Arch Virol. 165, 1855-1861. PMid:32472289
1
10.1007/s00705-020-04675-7
Cho, Y.I., Yoon, K.J. (2014). An overview of calf diarrhea-infectious etiology, diagnosis, and intervention. J Vet Sci. 15(1): 1-17. PMid:24378583 PMCid:PMC3973752
2
10.4142/jvs.2014.15.1.1
Al Mawly, J., Grinberg, A., Prattley, D., Moffat, J., Marshall, J., French, N. (2015). Risk factors for neonatal calf diarrhoea and enteropathogen shedding in New Zealand dairy farms. Vet J. 203(2): 155-160. PMid:25653209 PMCid:PMC7110729
3
10.1016/j.tvjl.2015.01.010
Singh, S., Singh, R., Singh, K.P., Singh, V., Malik, Y.P.S., Kamdi, B., Singh, R., Kashyap, G. (2019). Prevalence of bovine coronavirus infection in organized dairy farms of Central and North regions, India. Biol Rhythm Res. 1-7.
4
10.1080/09291016.2019.1629093
Barua, S.R., Rakib, T.M., Rahman, M.M., Selleck, S., Masuduzzaman, M., Siddiki, A.Z., Hossain, M.A., Chowdhury, S. (2019). Disease burden and associated factors of rotavirus infection in calves in south-eastern part of Bangladesh. Asian J Med Biol Res. 5(2): 107-116.
5
Soltan, M.A., Tsai, Y.L., Lee, P.Y.A., Tsai, C.F., Chang, H.F.G., Wang, H.T.T., Wilkes, R.P. (2016). Comparison of electron microscopy, ELISA, real time RT-PCR and insulated isothermal RT-PCR for the detection of Rotavirus group A (RVA) in feces of different animal species. J Virol Methods. 235, 99-104. PMid:27180038 PMCid:PMC7113751
6
10.1016/j.jviromet.2016.05.006
Heredia, N., García, S. (2018). Animals as sources of food-borne pathogens: A review. Anim Nutr. 4(3): 250-255. PMid:30175252 PMCid:PMC6116329
7
10.1016/j.aninu.2018.04.006
Miño, S., Kern, A., Barrandeguy, M., Parreño, V. (2015). Comparison of two commercial kits and an in-house ELISA for the detection of equine rotavirus in foal feces. J Virol Methods. 222, 1-10. PMid:25979610
8
10.1016/j.jviromet.2015.05.002
Lorrot, M., Vasseur, M. (2007). How do the rotavirus NSP4 and bacterial enterotoxins lead differently to diarrhea? Virol J. 4, 31. PMid:17376232 PMCid:PMC1839081
9
10.1186/1743-422X-4-31
Chandler-Bostock, R., Hancox, L.R., Payne, H., Iturriza-Gomara, M., Daly, J.M., Mellits, K.H. (2015). Diversity of group A rotavirus on a UK pig farm. Vet Microbiol. 180(3-4): 205-211. PMid:26432051 PMCid:PMC4627360
10
10.1016/j.vetmic.2015.09.009
Mijatovic-Rustempasic, S., Esona, M.D., Williams, A.L., Bowen, M.D. (2016). Sensitive and specific nested PCR assay for detection of rotavirus A in samples with a low viral load. J Virol Methods. 236, 41-46. PMid:27421626 PMCid:PMC5075964
11
10.1016/j.jviromet.2016.07.007
Desselberger, U. (2014). Rotaviruses. Virus Res. 190, 75-96. PMid:25016036
12
10.1016/j.virusres.2014.06.016
Izzo, M.M., Kirkland, P.D., Gu, X., Lele, Y., Gunn, A.A., House, J.K. (2012). Comparison of three diagnostic techniques for detection of rotavirus and coronavirus in calf faeces in Australia. Aust Vet J. 90(4): 122-129.
13
Maes, R.K., Grooms, D.L., Wise, A.G., Han, C., Ciesicki, V., Hanson, L., Vickers, M.L., et al. (2003). Evaluation of a human group a rotavirus assay for on-site detection of bovine rotavirus. J Clin Microbiol. 41(1): 290-294. PMid:12517863 PMCid:PMC149593
14
10.1128/JCM.41.1.290-294.2003
Cho, Y.I., Kim, W.I., Liu, S., Kinyon, J.M., Yoon, K.J. (2010). Development of a panel of multiplex real-time polymerase chain reaction assays for simultaneous detection of major agents causing calf diarrhea in feces. J Vet Diagn Invest. 22(4): 509-517. PMid:20622219
15
10.1177/104063871002200403
Jothikumar, N., Kang, G., Hill, V. (2009). Broadly reactive TaqMan assay for real-time RT-PCR detection of rotavirus in clinical and environmental samples. JIN2@cdc.gov. J Virol Meth. 155(2): 126-131. PMid:18951923
16
10.1016/j.jviromet.2008.09.025
Carrouel, F., Llodra, J.C., Viennot, S., Santamaria, J., Bravo, M., Bourgeois, D. (2016). Access to interdental brushing in periodontal healthy young adults: a cross-sectional study. PloS One. 11(5): e0155467. PMid:27192409 PMCid:PMC4871464
17
10.1371/journal.pone.0155467
Shaha, M., Sifat, S.F., Mamun, M.A., Billah, M.B., Sharif, N., Nobel, N.U., Parvez, A.K., et al. (2020). Comparative evaluation of sensitivity and specificity of immunochromatography kit for the rapid detection of norovirus and rotavirus in Bangladesh. F1000Res. 8, 173. [Internet] https://f1000research.com/articles/8-173/v2
18
10.12688/f1000research.17362.2
Lorestani, N., Moradi, A., Teimoori, A., Masodi, M., Khanizadeh, S., Hassanpour, M., Javid, N., et al. (2019). Molecular and serologic characterization of rotavirus from children with acute gastroenteritis in northern Iran, Gorgan. BMC Gastroenterol. 19(1): 100. PMid:31221096 PMCid:PMC6585024
19
10.1186/s12876-019-1025-x
Sajid, M., Kawde, A.N., Daud, M. (2015). Designs, formats and applications of lateral flow assay: A literature review. J Saudi Chem Soc. 19(6): 689-705.
20
Liu, D. (2016). Molecular detection of human viral pathogens. CRC Press.
21
10.1201/b13590
Liu, J., Kabir, F., Manneh, J., Lertsethtakarn, P., Begum, S., Gratz, J., Becker, S.M., et al. (2014). Development and assessment of molecular diagnostic tests for 15 enteropathogens causing childhood diarrhoea: a multicentre study. Lancet Infec Dis. 14(8): 716-724.
22
10.1016/S1473-3099(14)70808-4
Gutiérrez-Aguirre, I., Steyer, A., Boben, J., Gruden, K., Poljšak-Prijatelj, M., Ravnikar, M. (2008). Sensitive detection of multiple rotavirus genotypes with a single reverse transcription-real-time quantitative PCR assay. J Clin Microbiol. 46(8): 2547-2554. PMid:18524966 PMCid:PMC2519481
23
10.1128/JCM.02428-07
Muktar, Y., Mam, G., Tesfaye, B., Belina, D. (2015). A review on major bacterial causes of calf diarrhea and its diagnostic method. JVMAH. 7(5): 173-185.
24
10.5897/JVMAH2014.0351
Klein, D., Kern, A., Lapan, G., Benetka, V., Möstl, K., Hassl, A., Baumgartner, W. (2009). Evaluation of rapid assays for the detection of bovine coronavirus, rotavirus A and Cryptosporidium parvum in faecal samples of calves. Vet J. 182(3): 484-486. PMid:18778958 PMCid:PMC7110451
25
10.1016/j.tvjl.2008.07.016
Das, S., Medhi, M., Khaound, M., Doley, P., Islam, M., Borah, D. (2018). Detection of group a rotavirus infection in diarrhoeic calves by electropherotyping and reverse transcriptase polymerase chain reaction. JEZS. 6(3): 1071-1075.
26
Schoenthaler, S., Kapil, S. (1999). Development and applications of a bovine coronavirus antigen detection enzyme-linked immunosorbent assay. Clin Diagn Lab Immunol. 6(1): 130-132.
27
Liang, H., Geng, J., Bai, S., Aimuguri, A., Gong, Z., Feng, R., Shen, X., Wei, S. (2019). TaqMan real-time PCR for detecting bovine viral diarrhea virus. Pol J Vet Sci. 22(2): 405-413.
28
Katz, E.M., Gautam, R., Bowen, M.D. (2017). Evaluation of an alternative recombinant thermostable Thermus thermophilus (rTth)-based real-time reverse transcription-PCR kit for detection of rotavirus A. J Clin Microbiol. 55(5): 1585-1587. PMid:28275075 PMCid:PMC5405277
29
10.1128/JCM.00126-17