SHORT_COMMUNICATION The worldwide search for the new mutations in the RNA-directed RNA polymerase domain of SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is an RNA virus, responsible for the current pandemic outbreak. In total, 200 genomes of the SARS‐CoV‐2 strains from four host organisms have been analyzed. To investigate the presence of the new mutations in the RNA-directed RNA Polymerase (RdRp) of SARS-CoV-2, we analyzed sequences isolated from different hosts, with particular emphasis on human isolates. We performed a search for the new mutations of the RdRp proteins and study how those newly identified mutations could influence RdRp protein stability. Our results revealed 25 mutations in Rhinolophus sinicus, 1 in Mustela lutreola, 6 in Homo sapiens, and none in Mus musculus RdRp proteins of the SARS-CoV-2 isolates. We found that P323L is the most common stabilising radical mutation in human isolates. Also, we described several unique mutations, specific for studied hosts. Therefore, our data suggest that new and emerging variants of the SARS-CoV-2 RdRp have to be considered for the development of effective therapeutic agents and treatments. https://macvetrev.mk/Files/Article/2021/10.2478/macvetrev-2020-0036/macvetrev-2020-0036.pdf 2021-03-15T09:00:00 87 94 10.2478/macvetrev-2020-0036 SARS-CoV-2 mutation RNA-dependent RNA polymerases RdRp Nsp12 Siarhei A. Dabravolski sergedobrowolski@gmail.com false 1 Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine (UO VGAVM), Dovatora str. 7/11, Vitebsk 21002, Belarus LEAD_AUTHOR Yury K. Kavalionak false 2 Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine (UO VGAVM), Dovatora str. 7/11, Vitebsk 21002, Belarus AUTHOR Wu, Z., Yang, L., Ren, X., He, G., Zhang, J., Yang, J., Qian, Z., et al. (2016). Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. ISME J. 10(3): 609-620. PMid:26262818 PMCid:PMC4817686 1 10.1038/ismej.2015.138 Huang, J., Song, W., Huang, H., Sun, Q. (2020). Pharmacological therapeutics targeting RNA-dependent RNA polymerase, proteinase and spike protein: from mechanistic studies to clinical trials for COVID-19. J Clin Med. 9(4): 1131. PMid:32326602 PMCid:PMC7231166 2 10.3390/jcm9041131 Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., et al. (2013). Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503(7477): 535-538. PMid:24172901 PMCid:PMC5389864 3 10.1038/nature12711 Oreshkova, N., Molenaar, R.J., Vreman, S., Harders, F., Munnink, B.B.O., Hakze, R., Gerhards, N., et al. (2020). SARS-CoV2 infection in farmed mink, Netherlands, April 2020 [Internet]. Microbiology; 2020 May [cited 2020 May 23]. Available from: http://biorxiv.org/lookup/doi/10.1101/2020.05.18.101493 4 10.1101/2020.05.18.101493 Gretebeck, L.M., Subbarao, K. (2015). Animal models for SARS and MERS coronaviruses. Curr Opin Virol. 13, 123-129. PMid:26184451 PMCid:PMC4550498 5 10.1016/j.coviro.2015.06.009 Dabravolski, S. (2020). The worldwide search for the new mutations in the RNA-directed RNA polymerase domain of SARS-CoV-2 [Supplementary data and figures]. Available at: https://osf.io/xtz6a/. 6 10.17605/OSF.IO/XTZ6A Edgar, R.C. (2004). Muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113. PMid:15318951 PMCid:PMC517706 7 10.1186/1471-2105-5-113 Okonechnikov, K., Golosova, O., Fursov, M. (2012). Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28(8): 1166-1167. PMid:22368248 8 10.1093/bioinformatics/bts091 Buchan, D.W.A., Jones, D.T. (2019). The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res. 47(W1): W402-W407. PMid:31251384 PMCid:PMC6602445 9 10.1093/nar/gkz297 Laimer, J., Hiebl-Flach, J., Lengauer, D., Lackner, P. (2016). MAESTRO web: a web server for structure-based protein stability prediction. Bioinformatics 32(9): 1414-1416. PMid:26743508 10 10.1093/bioinformatics/btv769 Rodrigues, C.H.M., Pires, D.E.V., Ascher, D.B. (2018). DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res. 46(W1): W350-W355. PMid:29718330 PMCid:PMC6031064 11 10.1093/nar/gky300 Pires, D.E.V., Ascher, D.B., Blundell, T.L. (2014). DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res. 42(W1):W314-W319. PMid:24829462 PMCid:PMC4086143 12 10.1093/nar/gku411 Duffy, S. (2018). Why are RNA virus mutation rates so damn high? PLOS Biol. 16(8): e3000003. PMid:30102691 PMCid:PMC6107253 13 10.1371/journal.pbio.3000003 Smith, E.C., Denison, M.R. (2013). Coronaviruses as DNA wannabes: a new model for the regulation of RNA virus replication fidelity. PLoS Pathog. 9(12): e1003760. PMid:24348241 PMCid:PMC3857799 14 10.1371/journal.ppat.1003760 Irwin, K.K., Renzette, N., Kowalik, T.F., Jensen, J.D. (2015). Antiviral drug resistance as an adaptive process. Virus Evol. 2(1): vew014. PMid:28694997 PMCid:PMC5499642 15 10.1093/ve/vew014 Frappier, V., Chartier, M., Najmanovich, R.J. (2015). ENCoM server: exploring protein conformational space and the effect of mutations on protein function and stability. Nucleic Acids Res. 43(W1): W395-400. PMid:25883149 PMCid:PMC4489264 16 10.1093/nar/gkv343 Bao, L., Deng, W., Huang, B., Gao, H., Liu, J., Ren, L., Wei, Q., et al. (2020). The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 583(7818): 830-833. PMid:32380511 17 10.1038/s41586-020-2312-y Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798): 270-273. 18 Sexton, N.R., Smith, E.C., Blanc, H., Vignuzzi, M., Peersen, O.B., Denison, M.R. (2016). Homology-based identification of a mutation in the coronavirus RNA-dependent RNA polymerase that confers resistance to multiple mutagens. J Virol. 90(16): 7415-7428. PMid:27279608 PMCid:PMC4984655 19 10.1128/JVI.00080-16 Ruan, Z., Liu, C., Guo, Y., He, Z., Huang, X., Jia, X. (2020). Potential inhibitors targeting RNA-dependent RNA polymerase activity (NSP12) of SARS-CoV-2 [Internet]. Preprints  2020030024 [cited 2020 May 23]. Available from: https://www.preprints.org/manuscript/202003.0024/v1 20 10.20944/preprints202003.0024.v1 Pfeiffer, J.K., Kirkegaard, K. (2003). A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity. Proc Natl Acad Sci U S A. 100(12): 7289-7294. PMid:12754380 PMCid:PMC165868 21 10.1073/pnas.1232294100 Neogi, U., Hill, K.J., Ambikan, A.T., Heng, X., Quinn, T.P., Byrareddy, S.N., Sönnerborg, A., et al. (2020). Feasibility of known RNA polymerase inhibitors as Anti-SARS-CoV-2 drugs. Pathogens 9(5): 320. PMid:32357471 PMCid:PMC7281371 22 10.3390/pathogens9050320 Shannon, A., Le, N.T.T., Selisko, B., Eydoux, C., Alvarez, K., Guillemot, J.C., Decroly, E., et al. (2020). Remdesivir and SARS-CoV-2: Structural requirements at both nsp12 RdRp and nsp14 Exonuclease active-sites. Antiviral Res. 178, 104793. PMid:32283108 PMCid:PMC7151495 23 10.1016/j.antiviral.2020.104793 Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang, T., et al. (2020). Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368(6492): 779-782. PMid:32277040 PMCid:PMC7164392 24 10.1126/science.abb7498 Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., et al. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30(3): 269-271. PMid:32020029 PMCid:PMC7054408 25 10.1038/s41422-020-0282-0 Pachetti, M., Marini, B., Benedetti, F., Giudici, F., Mauro, E., Storici, P., Masciovecchio, C., et al. (2020). Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med. 18(1): 179. PMid:32321524 PMCid:PMC7174922 26 10.1186/s12967-020-02344-6 Coppée, F., Lechien, J.R., Declèves, A.E., Tafforeau, L., Saussez, S. (2020). Severe acute respiratory syndrome coronavirus 2: virus mutations in specific European populations. New Microbes New Infect. 36, 100696. PMid:32509310 PMCid:PMC7238997 27 10.1016/j.nmni.2020.100696 Chand, G.B., Banerjee, A., Azad, G.K. (2020). Identification of novel mutations in RNA-dependent RNA polymerases of SARS-CoV-2 and their implications on its protein structure. PeerJ. 8, e9492. PMid:32685291 PMCid:PMC7337032 28 10.7717/peerj.9492