ORIGINAL_ARTICLE The effect of alkaline water and sodium ascorbate on glucose and cortisol levels during acute hyperthermic stress in white laboratory rats Stress can be a reason for some physiological and biological disorders in the body. The antioxidative defense system is necessary for the maintenance of redox homeostasis in the organisms. Alkaline water (AW) is in the focus of the scientific interest due to its antioxidative effect. The treatment with AW and sodium ascorbate (SA) is expected to have potential preventive effect on the organism to hyperthermic stress. The aim of this study was to investigate the effect of AW and SA on glucose and cortisol levels during acute hyperthermic stress, in white female Wistar laboratory rats. The rats were divided into three groups, each having 10 subjects. They were exposed in hyperthermic conditions (41˚C) for 80 min, in 21 consecutive days in order to induce oxidative stress. The first group received drinkable water (control group), the second AW, and the third, AW and SA. Plasma glucose levels were determined by colorimetric method. Cortisol level was measured by the enzyme-linked immunosorbent assay method (ELISA). The means were compared using the Tukey test. Differences were considered significant at a level of p < 0.05. Our results showed that levels of glucose and cortisol were significantly higher in the group treated with AW on the 21st day after treatment (p < 0.0001), but not on the 7th and 14th day as compared to the control group. Also, co-treatment of animals with AW and SA had significantly increased the levels of glucose and cortisol on the 21st day after treatment, indicating a synergistic effect. In conclusion, the individual action of AW or in synergism with SA caused a high protective effect on oxidative damage in white Wistar laboratory rats. https://macvetrev.mk/Files/Article/2021/10.2478/macvetrev-2021-0023/macvetrev-2021-0023.pdf 2021-10-15T09:00:00 179 185 10.2478/macvetrev-2021-0023 alkaline water sodium ascorbate hyperthermic stress glucose cortisol Valdrina Ajeti valdrinaajetii@gmail.co false 1 Department of Biochemistry and Physiology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, R.N. Macedonia LEAD_AUTHOR Slagjana Brsakoska false 2 Institute for Mathematics, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, R.N. Macedonia AUTHOR Vasilka Rendjova false 3 Faculty of Dental Medicine, Ss. Cyril and Methodius University, Skopje, R.N. Macedonia AUTHOR Marija Angelovski false 4 Department of Biochemistry and Physiology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, R.N. Macedonia AUTHOR Icko Gjorgoski false 5 Department of Biochemistry and Physiology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, R.N. Macedonia AUTHOR Shirahata, S., Kabayama, S., Nakano, M., Miura, T., Kusumoto, K., Gotoh, M., Hayashi, H., et al. (1997). Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage. Biochem Biophys Res Commun. 234, 269-274. PMid:9169001 1 10.1006/bbrc.1997.6622 Kashiwagi, T., Hamasaki, T., Kabayama, S., Takaki, M., Teruya, K., Katakura, Y., et al. (2005). Suppression of oxidative stress-induced apoptosis of neuronal cells by electrolyzed reduced water. In: Gòdia F., Fussenegger M. (Eds.), Animal cell technology meets genomics. ESACT Proceedings, Vol 2. (pp. 257-259). Dordrecht: Springer 2 10.1007/1-4020-3103-3_50 Watanabe, T. (1995). Effect of alkaline ionized water on reproduction in gestational and lactational rats. J Toxicol Sci. 20, 135-142. PMid:7473891 3 10.2131/jts.20.135 Hanaoka, K. (2001). Antioxidant effects of reduced water produced by electrolysis of sodium chloride solutions. J Appl Electrochem. 31, 1307-1313. 4 10.1023/A:1013825009701 Oda, M., Kusumoto, K., Teruya, K., Hara, T., Maki, S., Kabayama, S., et al. (1999). Electrolyzed and natural reduced water exhibit insulin-like activity on glucose uptake into muscle cells and adipocytes. In: A. Bernard, B. Griffiths, W. Noe, F. Wurm (Eds.), Animal cell technology: Products from cells, cells as products. (pp. 425-427). Dordrecht: Kluwer Academic Publishers 5 10.1007/0-306-46875-1_90 Kim, J. M., Yokoyama, K. (1997). Effects of alkaline ionized water on spontaneously diabetic GK-rats fed sucrose. Korean J Lab Anim Sci. 13, 187-190. 6 Watanabe, T., Kishikawa, Y., Shirai, W. (1997). Influence of alkaline ionized water on rat erythrocyte hexokinase activity and myocardium. J Toxicol Sci. 22, 141-152. PMid:9198011 7 10.2131/jts.22.2_141 Li, Y.P., Nishimura, T., Teruya, K., Maki, T., Komatsu, T., Hamasaki, T., et al. (2002). Protective mechanism of reduced water against alloxan-induced pancreatic β-cell damage: scavenging effect against reactive oxygen species. Cytotechnology 40(1-3):139-149. 8 Li. Y.P., Teruya. K., Katakura. Y. , Kabayama. S. , Otsubo. K., Morisawa. S., et al. (2005). Effect of reduced water on the apoptotic cell death triggered by oxidative stress in pancreatic β HIT-T15 cell. In: Gòdia F., Fussenegger M. (Eds.), Animal cell technology meets genomics. ESACT Proceedings, Vol 2. (pp. 121-124). Dordrecht: Springer 9 10.1007/1-4020-3103-3_21 Li, Y.P., Hamasaki, T., Nakamichi, N., Kashiwagi, T., Komatsu, T., Ye J., et al. (2011). Suppressive effects of electrolyzed reduced water on alloxan-induced apoptosis and type 1 diabetes mellitus. Cytotechnology 63(2): 119-131. PMid:21063772 PMCid:PMC3080478 10 10.1007/s10616-010-9317-6 Li Y.P., Hamasaki T., Teruya K., Nakamichi N., Gadek Z., Kashiwagi T., et al. (2012). Suppressive effects of natural reduced waters on alloxan-induced apoptosis and type 1 diabetes mellitus. Cytotechnology 64, 281-297. PMid:22143345 PMCid:PMC3386384 11 10.1007/s10616-011-9414-1 Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., et al. (2017). Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017, 8416763. PMid:28819546 PMCid:PMC5551541 12 10.1155/2017/8416763 Halliwel, B., Gutteridge, JMC. (1989). Free radicals in biology and medicine. New York: Oxford University Press 13 Hall, D.M., Buettner, G.R., Matthes, R.D., Gisolfi, C.V. (1994). Hyperthermia stimulates nitric oxide formation: electron paramagnetic resonance detection of NO-heme in blood. J Appl Physiol. 77, 548-553. PMid:8002499 14 10.1152/jappl.1994.77.2.548 Webb, A.L., Villamor, E. (2007). Update: Effects of antioxidant and non-antioxidant vitamin supplementation on immune function. Nutr Rev. 65, 181. PMid:17566547 15 10.1111/j.1753-4887.2007.tb00298.x Khassaf, M., McArdle, A., Esanu, C., Vasilaki, A., McArdle, F., Griffiths, R.D., Jackson, MJ. (2003). Effect of vitamin C supplements on antioxidant defence and stress proteins in human lymphocytes and skeletal muscle. J Physiol. 549(2): 645-652. PMid:12692182 PMCid:PMC2342961 16 10.1113/jphysiol.2003.040303 Ardekani, M.A., Ardekani, A.S. (2007). Effect of vitamin C on blood glucose, serum lipids & serum insulin in type II diabetes patients. Indian J Med Res. 126(5): 471-474. 17 Sargeant, L.A., Wareham, N.J., Bingham, S., Day, N.E., Luben, R.N., Oakes, S., Welch, A., Khaw, K.T. (2000). Vitamin C and hyperglycemia in the European prospective investigation into cancer-Norfolk (EPIC-Norfolk) study: a population based study. Diabetes Care 23(6): 726-732. PMid:10840986 18 10.2337/diacare.23.6.726 Bashaw, M.J., Sicks, F., Palme, R., Schwarzenberger, F., Tordiffe, A.S.W., Ganswindt, A. (2016). Non-invasive assessment of adrenocortical activity as a measure of stress in giraffe (Giraffa camelopardalis). BMC Vet Res. 12, 235. PMid:27756312 PMCid:PMC5070010 19 10.1186/s12917-016-0864-8 Carnegie, S.D., Schoof, V.A., Jack, K.M. (2011). Rise to power: a case study of male fecal androgen and cortisol levels before and after a non-aggressive rank change in a group of wild white-faced capuchins (Cebus capucinus). Folia Primatol (Basel). 82(6): 299-307. PMid:22488354 20 10.1159/000337220 O'Connor, T.M., O'Halloran, D.J., Shanahan, F. (2000). The stress response and the hypothalamic-pituitary-adrenal axis: from molecule to melancholia. QJM. 93, 323-333. PMid:10873181 21 10.1093/qjmed/93.6.323 Aminkeng, F., Ross, C.J.D., Rassekh, S.R., Hwang, S., Rieder, M.J., Bhavsar, A.P., Smith A., et al. (2016). Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br J Clin Pharmacol. 683-695. PMid:27197003 PMCid:PMC5338111 22 10.1111/bcp.13008 Lahiri, S., Lloyd, B.B. (1962). The form of vitamin C released by the rat adrenal. Biochem J. 84, 474-477. PMid:14461598 PMCid:PMC1243699 23 10.1042/bj0840474 Lahiri S., Lloyd B.B. (1962). The effect of stress and corticotrophin on the concentrations of vitamin C in blood and tissues of the rat. Biochem J. 84, 478-483. PMid:14461597 PMCid:PMC1243700 24 10.1042/bj0840478 Hooper, M.H., Carr, A., Marik, P.E. (2019). The adrenal-vitamin C axis: from fish to guinea pigs and primates. Crit Care. 23, 29. PMid:30691525 PMCid:PMC6348603 25 10.1186/s13054-019-2332-x Kajiyama, S., Hasegawa, G., Asano, M., Hosoda, H., Fukui, M., Nakamura, N., Adachi, T., et al. (2008). Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr Res. 28, 137-143. PMid:19083400 26 10.1016/j.nutres.2008.01.008 Mesallamy, H.E., Suwailem, S., Hamdy, N. (2007). Evaluation of C-reactive protein, endothelin-1, adhesion molecule(s), and lipids as inflammatory markers in type 2 diabetes mellitus patients. Mediators Inflamm. 2007, 73635. PMid:17497038 PMCid:PMC1820618 27 10.1155/2007/73635 Jin, D., Ryu, S.H., Kim, H.W., Yang, E.J., Lim, S.J., Ryang, Y.S., Chung, C.H., et al. (2006). Anti-diabetic effect of alkaline-reduced water on OLETF rats. Biosci Biotechnol Biochem. 70, 31-37. PMid:16428818 28 10.1271/bbb.70.31 Kim, M.J., Kim, H.K. (2006). Anti-diabetic effects of electrolyzed reduced water in streptozotocin-induced and genetic diabetic mice. Life Sci. 79, 2288-2292. PMid:16945392 29 10.1016/j.lfs.2006.07.027 Sreemantula, S., Kilari, E.K., Vardhan, V.A., Jaladi, R. (2005). Influence of antioxidant (L-ascorbic acid) on tolbutamide-induced hypoglycaemia /antihyperglycaemia in normal and diabetic rats. BMC Endocr Disord. 5, 2. PMid:15745442 PMCid:PMC555571 30 10.1186/1472-6823-5-2 Jamieson, D.J. (1998). Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14(16): 1511-1527. < 1511::AID-YEA356 > 3.0.CO;2-S 31 10.1002/(SICI)1097-0061(199812)14:16 Chmelíkováa, E., Bolechová, P., Chaloupková, H., Svobodová, I., Jovicic, M., Sedmíková, M. (2019). Salivary cortisol as a marker of acute stress in dogs: A review. Dom Anim Endocrinol. 72, 1-10. PMid:32213439 32 10.1016/j.domaniend.2019.106428 McCabe, D., Lisy, K., Lockwood, C., Colbeck, M. (2017). The impact of essential fatty acid, B vitamins, vitamin C, magnesium and zinc supplementation on stress levels in women: a systematic review. JBI Database System Rev Implement Rep. 2, 402-453. PMid:28178022 33 10.11124/JBISRIR-2016-002965 Haase, C.G., Long, A.K., James, G.F. (2016). Energetics of stress: linking plasma cortisol levels to metabolic rate in mammals. Biol Lett. 12(1): 20150867. PMid:26740562 PMCid:PMC4785924 34 10.1098/rsbl.2015.0867 Fumeron, C., Nguyen-Khoa, T., Saltiel, C., Kebede, M., Buisson, C., Drüeke, T.B., et al. (2005). Effects of oral vitamin C supplementation on oxidative stress and inflammation status in haemodialysis patients. Nephrol Dial Transplant. 20(9): 1874-1879. PMid:15972322 35 10.1093/ndt/gfh928 Stone, I. (1979). Homo sapiens ascorbicus, a biochemically corrected robust human mutant. Medical Hypotheses 5(6): 711-721. 36 10.1016/0306-9877(79)90093-8