ORIGINAL_ARTICLE
Bovine whey supplementation in a high-fat diet fed rats alleviated offspring’s cardiac injury
The research study determined the effect of bovine whey supplementation in rats fed on high-fat diet on occurrence of myocardium damage and disfunction in its offspring. Eighty virgin female rats (Rattus norvegicus) (100-110 g body weight) were used for this study. Following mating, the pregnant rats were categorized into four groups: control, whey supplemented (W), high-fat diet (FD) and high-fat diet and whey supplemented group (FD+W). Whey supplementation alone or in combination with a high-fat diet was administered every other day during the gestation and lactation period. Offspring rats at the age of 1, 7, 14 and 21-day post-partum were sacrificed and their hearts were processed for histological, p53 immunohistochemistry, transmission electron microscopy and biochemical markers for cell damage. Offspring from the FD+W group exhibited improvement of the myocardium histological picture. Moreover, there was a lower accumulation of lipid deposits and regular organization of cardiomyocyte bands and intercalated discs. A lower p53 immune reaction and lower single strand DNA damage was noticed. The levels of the antioxidant enzymes (SOD and catalase) in the myocardium were increased, whereas the contents of IL6, MDA and caspase-3 were decreased, resulting in a reduction in inflammation and cell death. In conclusion, supplementation of whey to mother rats fed with high-fat diet alleviated the markers of cardiomyocyte injury in its offspring due to its antioxidant effect.
https://macvetrev.mk/Files/Article/2022/10.2478/macvetrev-2022-0017/macvetrev-2022-0017.pdf
2022-03-15T09:00:00
89
99
10.2478/macvetrev-2022-0017
high-fat diet
rats
myocardium
offspring
whey
Eman
Mohammed
Emara
false
1
Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
AUTHOR
Hassan
Ibrahim
El-Sayyad
elsayyad@mans.edu.eg
false
2
Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
LEAD_AUTHOR
Heba
Atef
El-Ghaweet
false
3
Department of Zoology, Faculty of Science, Mansoura University, Mansoura, Egypt
AUTHOR
Hoffman, D.J., Powell, T.L., Barrett, E.S., Hardy, D.B. (2021). Developmental origins of metabolic diseases. Physiol Rev. 101(3): 739-795. PMid:33270534
1
10.1152/physrev.00002.2020
Siddeek, B., Mauduit, C., Chehade, H., Blin, G., Liand, M., Chindamo, M. et al. (2019). Long-term impact of maternal high-fat diet on offspring cardiac health: role of micro-RNA biogenesis. Cell Death Discov. 5, 71. PMid:30854230 PMCid:PMC6397280
2
10.1038/s41420-019-0153-y
Mdaki, K.S., Larsen, T.D., Wachal, A.L., Schimelpfenig, M.D., Weaver, L.J., Dooyema, S.D. et al. (2016). Maternal high-fat diet impairs cardiac function in offspring of diabetic pregnancy through metabolic stress and mitochondrial dysfunction. Am J Physiol Heart Circ Physiol. 310, H681-H692. PMid:26801311 PMCid:PMC4867345
3
10.1152/ajpheart.00795.2015
Dunn, G.A., Bale, T.L. (2009). Maternal high-fat diet promotes body length increases and insulin insensitivity in second-generation mice. Endocrinology 150(11): 4999-5009. PMid:19819967 PMCid:PMC2775990
4
10.1210/en.2009-0500
Ferey, J.L.A., Boudoures, A.L., Reid, M., Drury, A., Scheaffer, S., Modi, Z. et al. (2019). A maternal high-fat, high-sucrose diet induces transgenerational cardiac mitochondrial dysfunction independently of maternal mitochondrial inheritance. Am J Physiol Heart Circ Physiol. 316(5): H1202-H1210. PMid:30901280 PMCid:PMC6580388
5
10.1152/ajpheart.00013.2019
Chatterton, D.E.W., Smithers, G., Roupas, P., Brodkorb, A. (2006). Bioactivity of β-lactoglobulin and α-lactalbumin-Technological implications for processing. Int Dairy J. 16(11): 1229-1240.
6
10.1016/j.idairyj.2006.06.001
Krissansen, G.W. (2007). Emerging health properties of whey proteins and their clinical implications. J Am Coll Nutr. 26(6): 713S-723S. PMid:18187438
7
10.1080/07315724.2007.10719652
El-Sayyad, H.I., El-Ghawet, H.A., El-Bayomi, K.S., Emara, E. (2020). Bovine whey improved the myocardial and lung damage of mother rats fed on a high fat diet. Stud Stem Cells Res Ther. 6(1): 001-008.
8
10.17352/sscrt.000014
Kandil, N.T.A.H. Sabry, D.A.M., Ashry, N.E.E., El-Sayyad, H.I.H. (2020). Therapeutic potential of whey against aging related cytological damage of adenohypophysis of rat. East African Scholars J Agri Life Sci. 3(9): 304-310.
9
10.36349/EASJALS.2020.v03i09.002
Sasaki, Y.F., Nishidate, E., Izumiyama, F., Matsusaka, N., Tsuda, S. (1997). Simple detection of chemical mutagens by the alkaline single-cell gel electrophoresis (Comet) assay in multiple mouse organs. Mutat Res. 391(3): 215-231.
10
10.1016/S1383-5718(97)00073-9
Deeg, R., Ziegenhorn, J. (1983). Kinetic enzymic method for automated determination of total cholesterol in serum. Clin Chem. 29(10): 1798-1802. PMid:6577981
11
10.1093/clinchem/29.10.1798
Fossati, P., Prencipe, L. (1982). Serum triglycerides determined colorimetrically with an enzyme that proceduces hydrogen peroxide. Clin Chem. 28(10): 2077-2080. PMid:6812986
12
10.1093/clinchem/28.10.2077
Grove, T.H. (1979). Effect of reagent PH on determination of the high-density lipoprotein cholesterol by precipitation with sodium phototungestate-magnesium. Clin Chem. 25(4): 560-564. PMid:38018
13
10.1093/clinchem/25.4.560
Friedewald, W.T., Levy, R.I., Fredrickson, D.S. (1972). Estimation of low density lipoprotein cholesterol in plasma without use preparative ultracentri-fuge. Clin Chem. 18(6): 499-502. PMid:4337382
14
10.1093/clinchem/18.6.499
Niskikimi, M., Rao, N., Yaki, K. (1972). The occurrence of superoxide anion in the reaction of reduced phenazinemethosulfate and molecular oxygen. Biochem Biophys Res Commun. 46(2): 849-854.
15
10.1016/S0006-291X(72)80218-3
Bock, P.P., Kramer, R., Pavelka, M. (1980). Peroxisomes and related particles. In M. Alfert, W. Beermann, L. Goldstein, K.R. Porter, P. Sitte (Eds.), Cell Biology Monographs 7 (pp. 44-74). Springer, Berlin
16
10.1007/978-3-7091-2055-2_2
Ohkawa, H., Ohishi, N., Yagi, K. (1979). Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 95(2): 351-358.
17
10.1016/0003-2697(79)90738-3
Ribaroff, G.A., Wastnedge, E., Drake, A.J., Sharpe, R.M., Chambers, T.J.G. (2017). Animal models of maternal high fat diet exposure and effects on metabolism in offspring: a meta-regression analysis. Obes Rev. 18(6): 673-686. PMid:28371083 PMCid:PMC5434919
18
10.1111/obr.12524
Butruille, L., Marousez, L., Pourpe, C., Oger, F., Lecoutre, S., Catheline, D. et al. (2019). Maternal high-fat diet during suckling programs visceral adiposity and epigenetic regulation of adipose tissue stearoyl-CoA desaturase-1 in offspring. Int J Obes (Lond). 43(12): 2381-2393. PMid:30622312
19
10.1038/s41366-018-0310-z
Guzzardi, M.A., Liistro, T., Gargani, L., Ait Ali, L., D’Angelo, G., Rocchiccioli, S. et al. (2018). Maternal obesity and cardiac development in the offspring: Study in human neonates and minipigs. JACC Cardiovasc Imaging. 11(12): 1750-1755. PMid:29153568
20
10.1016/j.jcmg.2017.08.024
Giacco, F., Brownlee, M. (2010). Oxidative stress and diabetic complications. Circ Res. 107(9): 1058-1070. PMid:21030723 PMCid:PMC2996922
21
10.1161/CIRCRESAHA.110.223545
Magalhães, D.A., Kume, W.T., Correia, F.S., Queiroz, T.S., Allebrandt Neto, E.W., Santos, M.P.D. et al. (2019). High-fat diet and streptozotocin in the induction of type 2 diabetes mellitus: a new proposal. An Acad Bras Cienc. 91(1): e20180314. PMid:30916157
22
10.1590/0001-3765201920180314
Xiang, L., Zhang, Q., Chi, C., Wu, G., Lin, Z., Li, J. et al. (2020). Curcumin analog A13 alleviates oxidative stress by activating Nrf2/ARE pathway and ameliorates fibrosis in the myocardium of highfat- diet and streptozotocin-induced diabetic rats. Diabetol Metab Syndr. 12, 1. PMid:31921358 PMCid:PMC6947902
23
10.1186/s13098-019-0485-z
Attia, H.M., Taha, M. (2018). Protective effect of captopril on cardiac fibrosis in diabetic albino rats: a histological and immunohistochemical study. Benha Med J. 35(3): 378-385.
24
10.4103/bmfj.bmfj_122_18
Sheen, J.M., Yu, H.R., Tain, Y.L., Tsai, W.L., Tiao, M.M., Lin, I.C., Tsai, C.C., Lin, Y.L., Huang, L.T. (2018). Combined maternal and postnatal high-fat diet leads to metabolic syndrome and is effectively reversed by resveratrol: a multiple-organ study. Sci Rep. 8(1): 5607. PMCid:PMC5884801
25
10.1038/s41598-018-24010-0PMid:29618822
Dasgupta, A., Chow, L., Wells, A., Datta, P. (2001). Effect of elevated concentration of alkaline phosphatase on cardiac troponin I assays. J Clin Lab Anal. 15(4): 175-177. PMid:11436198 PMCid:PMC6807912
26
10.1002/jcla.1023
You, A.H., Han, D.W., Ham, S.Y., Lim, W., Song, Y. (2019). Serum alkaline phosphatase as predictor of cardiac and cerebrovascular complications after lumbar spinal fusion surgery in elderly: A retrospective study. J Clin Med. 8(8): 1111. PMid:31357535 PMCid:PMC6723677
27
10.3390/jcm8081111
Al-Gebaly, A.S. (2019). Ameliorating role of whey syrup against ageing- related damage of myocardial muscle of Wistar Albino rats. Saudi J Biol Sci. 26(5): 950-956. PMid:31303824 PMCid:PMC6600591
28
10.1016/j.sjbs.2018.03.014
Martin, M., Kopaliani, I., Jannasch, A., Mund, C., Todorov, V., Henle, T. et al. (2015). Antihypertensive and cardioprotective effects of the dipeptide isoleucine-tryptophan and whey protein hydrolysate. Acta Physiol (Oxf). 215(4): 167-176. PMid:26297928
29
10.1111/apha.12578
El-Shinnawy, N.A., Abd Elhalem, S.S., Haggag, N.Z., Badr, G. (2018). Ameliorative role of camel whey protein and rosuvastatin on induced dyslipidemia in mice. Food Funct. 9(2): 1038-1047. PMid:29349446
30
10.1039/C7FO01871A
Bartfay, W.J., Davis, M.T., Medves, J.M., Lugowski, S. (2003). Milk whey protein decreases oxygen free radical production in a murine model of chronic iron-overload cardiomyopathy. Can J Cardiol. 19(10): 1163-1168.
31
Mann, P.E., Huynh, K., Widmer, G. (2018). Maternal high fat diet and its consequence on the gut microbiome: A rat model. Gut Microbes. 9(2): 143-154. PMid:29135334 PMCid:PMC5989793
32
10.1080/19490976.2017.1395122
Pace, R.M., Prince, A.L., Ma, J., Belfort, B.D.W., Harvey, A.S., Hu, M. et al. (2018). Modulations in the offspring gut microbiome are refractory to postnatal synbiotic supplementation among juvenile primates. BMC Microbiol. 18, 28. PMid:29621980 PMCid:PMC5887201
33
10.1186/s12866-018-1169-9