ORIGINAL_ARTICLE Suppression effects of excessively expressed gene Bcl-2 in cell lines of prostate cancer The aim of this study was to construct two plasmid-specific shRNA transcripts of the bcl-2 gene in order to prepare for reverse of cell apoptosis. The plasmid was designed according to a previously published sequence of interfering RNA following an appropriate reference, using appropriate software. By annulling complementary oligonucleotides, doublestranded inserts were formed. Recombinant shRNA-encoding plasmids were constructed by digestion of psiRNAx7SKGFPzeo plasmid (psiRNA-x7SKGFPzeo, with restrictive endonuclease BbsI electrophoresis in ultra-pure agarose with low melting point (LMP-Agarose). For each of the constructs, a suitable double-stranded insert downstream of x7SK (strong RNA III promoter) with T4 DNA ligase was cloned. The control plasmid psiRNAScr was used directly for transformation. The PC-3 cell lines were transfected with 2 plasmids, psiRNA-Bcl-2 and psiRNAScr to suppress the bcl-2 gene construct. The results have shown that the lowest level of bcl-2 genes was 48 h, and even lower 72 h after the transfer, and the mRNA levels returned to normal in 120 h. An increase in the percentage of cells with spontaneous apoptosis has been observed with successful inhibition of the bcl-2 gene. The induction of apoptosis in transfected cells increased the percentage of necrotic cells proportionally. The percentage of apoptotic cells transfected with psiRNA-bcl-2 plasmid increased proportionally to the increase of hydrogen peroxide concentration. The transfection of the PC-3 cell line from prostate cancer with constructed shRNA plasmid has induced suppression of bcl-2 gene expression versus control Scr plasmid. Suppression of bcl-2 gene expression significantly increased cell sensitivity to apoptosis induction. https://macvetrev.mk/Files/Article/2022/10.2478/macvetrev-2022-0028/macvetrev-2022-0028.pdf 2022-10-15 187 199 10.2478/macvetrev-2022-0028 shRNA plasmid Bcl-2 apoptosis cytotoxicity prostate cancer Igor Esmerov iesmerov@gmail.com false 1 Faculty of Veterinary Medicine – Skopje, Ss Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, North Macedonia LEAD_AUTHOR Branko Atanasov false 2 Faculty of Veterinary Medicine – Skopje, Ss Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, North Macedonia AUTHOR Aleksandra Angeleska false 3 Faculty of Veterinary Medicine – Skopje, Ss Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, North Macedonia AUTHOR Radmila Crceva false 4 Faculty of Veterinary Medicine – Skopje, Ss Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, North Macedonia AUTHOR Ljupco Mickov false 5 Faculty of Veterinary Medicine – Skopje, Ss Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, North Macedonia AUTHOR Ljupco Angelovski false 6 Faculty of Veterinary Medicine – Skopje, Ss Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, North Macedonia AUTHOR Slavica Josifovska false 7 Laboratory for Molecular Biology, Institute of Biology, Faculty for Natural Sciences and Mathematics, Ss Cyril and Methodius University in Skopje, 1000 Skopje, North Macedonia AUTHOR Nikolaj Markov false 8 Institute of Mountain Animal Husbandry and Agriculture, Agricultural Academy-Sofia, 5600 Troyan, Bulgaria AUTHOR Nikola Adamov false 9 Faculty of Veterinary Medicine – Skopje, Ss Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, North Macedonia AUTHOR Siegel, R.M., Frederiksen, J.K., Zacharias, D.A., Chan, F.K., Johnson, M., Lynch, D., Tsien, R.Y., Lenardo, M.J. (2000). Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 288(5475): 2354 -2357. PMid:10875918 1 10.1126/science.288.5475.2354 Chan, F.K., Chun, H.J., Zheng, L., Siegel, R.M., Bui, K.L., Lenardo, M.J. (2000). A domain in TNF receptors that mediates ligand-independent recpetor assembly and signaling. Science 288(5475): 2351 -2354. PMid:10875917 2 10.1126/science.288.5475.2351 Cooperberg, M.R., Park, S., Carroll, P.R. (2004). Prostate cancer 2004: insights from national disease registries. Oncology (Williston Park) 18(10): 1239-1247. 3 Sun, Y., Niu, J., Huang, J. (2009). Neuroendocrine differentiation in prostate cancer. Am J Transl Res. 1(2): 148-162. 4 Vashchenko, N., Abrahamsson, P.A. (2005). Neuroendocrine differentiation in prostate cancer: Implications for new treatment modalities. Eur Urol. 47(2): 147-155. PMid:15661408 5 10.1016/j.eururo.2004.09.007 Bonkhoff, H. (2001). Neuroendocrine differentiation in human prostate cancer. Morphogenesis, proliferation and androgen receptor status. Ann Oncol. 12 (Suppl 2): S141-S144. PMid:11762342 6 10.1093/annonc/12.suppl_2.S141 Huang, J., Yao, J.L., di Sant’agnese, P.A., Yang, Q., Bourne, P.A., Na, Y. (2006). Immunohistochemical characterization of neuroendocrine cells in prostate cancer. Prostate 66(13): 1399-1406. PMid:16865726 7 10.1002/pros.20434 Sambrook, J., Fritsch, E.F., Maniatis, T. (1989). Molecular cloning: a laboratory manual (2nd ed.). Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press 8 Panov, S. (2003). Basic methods in molecular biology. Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University in Skopje. 9 Panov, S. (2005). The effects of the RNA interferencemediated silencing of bcl-2 and hTERT genes in lung cancer cell lines [dissertation]. [Skopje, Macedonia]: Faculty of Natural Sciences and Mathematics, 147 p. 10 Wigler, M., Pellicer, A., Silverstein, S., Axel, R., Urlaub, G., Chasin, L. (1979). DNA-mediated transfer of the adenine phosphoribosyltransferase locus into mammalian cells. Proc Natl Acad Sci USA. 76(3): 1373-1376. PMid:286319 PMCid:PMC383253 11 10.1073/pnas.76.3.1373 Floch, V., Le Bolc’h, G., Audrezet, M.P., Yaouanc, J.J., Clement, J.C., des Abbayes, H., Mercier, B., et al. (1997). Cationic phosphonolipids as non viral vectors for DNA transfection in hematopoietic cell lines and CD34+ cells. Blood Cells Mol Dis. 23(1): 69-87. PMid:9215752 12 10.1006/bcmd.1997.0123 Guillaume-Gable, C., Floch, V., Mercier, B., Audrezet, M.P., Gobin, E., Le Bolch, G., Yaouanc, J.J., et al. (1998). Cationic phosphonolipids as nonviral gene transfer agents in the lungs of mice. Hum Gene Ther. 9(16): 2309-2319. PMid:9829530 13 10.1089/hum.1998.9.16-2309 Izumi, M., Miyazawa, H., Kamakura, T., Yamaguchi, I., Endo, T., Hanaoka, F. (1991). Blasticidin S-resistance gene (bsr): a novel selectable marker for mammalian cells. Exp Cell Res. 197(2): 229-233. 14 10.1016/0014-4827(91)90427-V Lin, Y., Ma, W., Benchimol, S. (2000). Pidd, a new death-domain-containing protein, is induced by p53 and promotes apoptosis. Nat Genet. 26(1): 122 -127. PMid:10973264 15 10.1038/79102 Osmak, M., Kapitanovic, S., Vrhovec, I., Beketic-Oreskovic, L., Jernej, B., Eljuga, D., Skrk, J. (1997). Characterization of human breast adenocarcinoma SK-BR-3 cells resistant to doxorubicin. Neoplasma 44(3): 157-162. 16 Osmak, M., Brozovic, A., Ambriovic-Ristov, A., Hadzija, M., Pivcevic, B., Smital, T. (1998). Inhibition of apoptosis is the cause of resistance to doxorubicin in human breast adenocarcinoma cells. Neoplasma 45(4): 223-230. 17 Osmak, M., Bordukalo, T., Kosmrlj, J., Kvajo, M., Marijanovic, Z., Eljuga, D., Polanc, S. (1999). Diazenes: modificators of tumor cell resistance to cisplatin. Neoplasma. 46(4): 201-206. 18 Bishop, J.M., Weinberg, R.A. (1996). Molecular oncology. New York: Scientific American, Inc. 20. 19 Panasci, M., Ballard, B.W., Breck, S., Rodriguez, D., Densimore, D.L. III, Weester, D.B., Baker, J.R. (2011). Evaluation of fecal DNA preservation techniques and effects of sample age and diet on genotyping success. J Wildl Manage. 75(7): 1616-1624. 20 10.1002/jwmg.221 Hanahan, D., Weinberg, R.A. (2000). The hallmarks of cancer. Cell 100(1): 57-70. 21 10.1016/S0092-8674(00)81683-9 Kramer, G., Erdal, H., Mertens, H.J., Nap, M., Mauermann, J., Steiner, G., Marberger, M., et al. (2004). Differentiation between cell death modes using measurements of different soluble forms of extracellular cytokeratin 18”. Cancer Res 64(5): 1751-1756. PMid:14996736 22 10.1158/0008-5472.CAN-03-2455 Degterev, A., Lugovskoy. A., Cardone, M., Mulley, B., Wagner, G., Mitchison, T., Yuan, J. (2001). Identification of small molecule inhibitors of interaction between the BH3 domain and BCL-XL. Nat Cell Biol. 3(2): 173 -182. PMid:11175750 23 10.1038/35055085 Brummelkamp, T.R., Bernards, R., Agami, R. (2002). A system for stable expression of short interfering RNAs in mammalian cells. Science 296(5567): 550-553. PMid:11910072 24 10.1126/science.1068999 Cao, W., Shiverick, K.T., Namiki, K., Sakai, Y., Porvasnik, S., Urbanek, C., Rosser, C.J. (2008). Docetaxel and bortezomib downregulate Bcl-2 and sensitize PC-3-Bcl-2 expressing prostate cancer cells to irradiation. World J Urol. 26(5): 509-516. PMid:18594829 25 10.1007/s00345-008-0289-5 Cheng, T.L., Teng, C.F., Tsai, W.H., Yeh, C.W., Wu, M.P., Hsu, H.C., Hung, C.F., Chang, W.T. (2009). Multitarget therapy of malignant cancers by the head-to-tail tandem array multiple shRNAs expression systemA multiple shRNAs-based gene therapy, Cancer Gene Ther. 16(6): 516-531. PMid:19165234 26 10.1038/cgt.2008.102 Pulukuri, S.M.K., Gondi, C.S., Lakka, S.S., Jutla, A., Estes, N., Gujrati, M., Rao, J.S. RNA Interference-directed knockdown of urokinase plasminogen activator and urokinase Plasminogen activator receptor inhibits prostatecancer cell invasion, survival and tumorogenesis in vivo. J Biol Chem. 280(43): 36529-36540. PMid:16127174 PMCid:PMC1351057 27 10.1074/jbc.M503111200 Jia, J., Zhang, W., Wang, B., Trinko, R., Jiang, J. (2003). The Drosophila Ste20 family kinase dMST functions as a tumor suppressor by restricting cell proliferation and promoting apoptosis. Genes Dev. 17(20): 2514-2519. PMid:14561774 PMCid:PMC218145 28 10.1101/gad.1134003