SHORT_COMMUNICATION
Growth dinamics on the skin and the coat in Normandian and Simmental cattle during adaptation to the farming technology in southwestern part of Bulgaria
The aim of the present study was to identify the adaptability of Normandy cows raised in a loose system to the climatic and technological conditions and to compare their adaptability with already acclimatized Simmental cows in one farm in Southwestern Bulgaria. Total of 20 cows at same age (II – IV lactation) and same body weight (630-660 kg) from both breeds were classified into 2 groups (each having 10 cows) and subjected to skin thickness measurement, fibers total weight determination and fiber categorization during the winter and summer season. The results have shown that during the winter season, the Normandy breed had significantly higher skin thickness at the elbow compared to the Simmental breed, whereas no differences were observed in the skin thickness between both breeds either at the neck or at the middle of the last rib. During the summer season, the differences on the skin thickness compared to the Simmental breed were observed at the neck (p<0.05), whilst at the elbow and at the middle of the last rib no differences were recorded (p>0.05). During the winter seasons, the coat of Normandy cows contained more soft fibers in comparison to the Simmentals cows. Furthermore, the changes in the observed parameters, influenced by climatic conditions showed similar pattern in both breeds. It can be concluded that the two breeds have emphasized their genetic potential and have a good adaptability to the temperate continental climate of the region.
https://macvetrev.mk/LoadAbstract?DOI=10.2478_macvetrev_2022_0029
2022-3-15
99
103
10.2478/macvetrev-2022-0029
cattle
goat
skin
environment
adaptation
Nikolay
Markov
false
1
Institute of Mountain Animal Husbandry and Agriculture, Agricultural Academy, Troyan, Bulgaria
AUTHOR
Svetoslava
Stoycheva
false
2
Institute of Mountain Animal Husbandry and Agriculture, Agricultural Academy, Troyan, Bulgaria
AUTHOR
Tsvetomira
Bancheva
false
3
Institute of Mountain Animal Husbandry and Agriculture, Agricultural Academy, Troyan, Bulgaria
AUTHOR
Ljupcho
Mickov
false
4
Faculty of Veterinary Medicine - Skopje, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, N. Macedonia
AUTHOR
Branko
Atanasov
false
5
Faculty of Veterinary Medicine - Skopje, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, N. Macedonia
AUTHOR
Igor
Esmerov
false
6
Faculty of Veterinary Medicine - Skopje, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, N. Macedonia
AUTHOR
Nikola
Adamov
adamovn@fvm.ukim.edu.mk
false
7
Faculty of Veterinary Medicine - Skopje, Ss. Cyril and Methodius University in Skopje, 1000 Skopje, N. Macedonia
LEAD_AUTHOR
Madzharov, I. (1988). Adaptation and stress in farm animals. Sofia: Zemizdat
1
Gergovska, Zh., Panayotova, M. (2016). Manual for exercises in cattle breeding. Academic publishing house, Thrace University, Stara Zagora, 4-12
2
Zimin, P. (2006). Comparative morphology of the skin-hair cover of some domestic and wild ungulates [dissertation]. Russia: Saratov State University “N.I. Vavilov”, 4-18
3
Pozdniakova, V. (2001). Histological structure of skins and hair covering of cattle during adaptations to low temperature conditions. J N. Nekrasova, Kostroma 2, 45-48.
4
Kurbanova, Sh. (2018). Bull heat resistance index of different breeds. Proceedings of the International Scientific and Practical Conference, Caspian Research Institute, May, 20, (pp. 773-774), Solenoe Zaimishte, Russia
5
Validov, H., Talashina, A. (2019). Adaptation ability of calves of the Montbeliard breed. Proceedings of Scientific Materials Conferences, July, 5-6, (pp. 256-259), Kivel 1, Russia
6
Chan, E., Nagaraj, S., Reverter, A. (2010). The evolution of tropical adaptation: comparing taurine and zebu cattle. Anim Genet. 41(5): 467-477
7
https://doi.org/10.1111/j.1365-2052.2010.02053.x
Pozdniakova, V., Kulina, T., Pozdnyakov, I. (2014). Morphological structure of the hair coat of cows of the Limousine breed when kept in open areas in winter and summer. Proceedings of Kostroma State University, Kostroma, 20(3): 121
8
Tsyrendorzhiev, Ch., Lambunov, S. (2013). Interior features and adaptive qualities of Hereford heifers in the conditions of Transbaikalia. Dairy and Meat Cattle Breeding 5, 10-11
9
Dikmen, S., Cole, J.B., Null, D.J., Hansen. P.J. (2012). Heritability of rectal temperature and genetic correlations with production and reproduction traits in dairy cattle. J Dairy Sci. 95(6): 3401-3405
10
https://doi.org/10.3168/jds.2011-4306
Kosilov, V., Irgashev, T., Akhmedov, D. (2016). Development of skin-hair cover in bulls of different genotypes. Proceedings of XIII International Scientific-Practical Conference, October, 18-20, (pp. 109-114), Krasnoyarsk, Russia
11
Pozdniakova, V., Soboleva, O., Smirnova, I., Bravilova, E. (2015). Dynamics of the skin-hair cover of cattle during their adaptation to resource-saving technology. Contemporary problems of science and education, Biological Sciences 4, 1 -5.
12
Carabano, M., Ramon, M., Menedez-Buchadera, A., Molina, A. (2019). Selecting for heat tolerance. Anim Front. 9, 62-68
13
https://doi.org/10.1093/af/vfy033
Kic, P. (2022). Influence of external thermal conditions on temperature-humidity parameters of indoor air in a Czech dairy farm during the summer. Animals 12, 1895
14
https://doi.org/10.3390/ani12151895
Singh, S., Soren, S., Beenam, A., Singh, A., Soresh, K. (2013). Heat tolerance for cattle and Buffalo. Climate Resilient Livestock and Production System 26, 270-277
15
Vdovichenko, Y., Pisarenko, N., Furs, N., Makarchuk, R. (2017). Influence of genetic and paragenetic factors on the live weight of young southern beef cattle. Scientific Herald “Askania Nova” 10, 148-156
16