ORIGINAL_SCIENTIFIC_ARTICLE
THE EFFECTS OF TACROLIMUS AND ERYTHROPOIETIN ON HISTOPATHOLOGIC AND FUNCTIONAL RECOVERY OF SCIATIC NERVE CRUSH IN MICE
Currently, despite decades of trial and error, peripheral nerve injury is an impenetrable clinical dilemma. Any proven effective pharmacologic agent leads to a decisive leap forward to the clinical management of neuropathies. This study investigated the effects of tacrolimus and erythropoietin on sciatic nerve regeneration. Twenty-three mice were randomly assigned to tacrolimus, erythropoietin, tacrolimus + erythropoietin, control, and sham groups following sciatic nerve crush via hemostatic forceps. Medications were administered for 28 consecutive days. The sham group received neither crush injury nor medication. Histopathologic, immunohistochemical, and walking track analyses were performed. In the erythropoietin group, axonal swelling was significantly reduced and the average axonal number significantly recovered up to 75% of normal nerve compared to other groups. Marked immunoreactivity to GFAP and S-100 protein was present in the tacrolimus group. Nevertheless, at least moderate GFAP and S-100 expressions were observed in all of the groups. Functional recovery was superior in the tacrolimus group after 14 days, although a complete return to near-normal function was achieved in all groups after 28 days, regardless of the medication used. Our data supported the neurotrophic effects of tacrolimus and erythropoietin; however, not enough data was gathered to confirm their synergistic effects. Whether these results are extensible to clinical scenarios requires further detailed investigations.
https://macvetrev.mk/LoadArticlePdf/361
2023-6-30
147
163
https://doi.org/10.2478/macvetrev-2023-0020
crush injury
erythropoietin
regeneration
sciatic nerve
tacrolimus
Kimia
Mansouri
false
1
Department of Clinical Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
AUTHOR
Hamidreza
Fattahian
hamidrezafattahian@yahoo.com
false
2
Department of Clinical Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
LEAD_AUTHOR
Alireza
Jahandideh
false
3
Department of Clinical Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran
AUTHOR
Hesameddin
Akbarein
false
4
Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
AUTHOR
Jones, S., Eisenberg, H.M., Jia, X. (2016). Advances and future applications of augmented peripheral nerve regeneration. Int J Mol Sci. 17(9): 1494. PMid:27618010 PMCid:PMC5037771
1
https://doi.org/10.3390/ijms17091494
Panagopoulos, G.N., Megaloikonomos, P.D., Mavrogenis, A.F. (2017). The present and future for peripheral nerve regeneration. Orthopedics 40(1): e141-e156.
2
https://doi.org/10.3928/01477447-20161019-01
Labroo, P., Ho, S., Sant, H., Shea, J., Gale, B.K., Agarwal, J. (2016). Controlled delivery of FK506 to improve nerve regeneration. Shock 46(3S): 154-159. PMid:27058050
3
https://doi.org/10.1097/SHK.0000000000000628
Caillaud, M., Chantemargue, B., Richard, L., Vignaud, L., Favreau, F., Faye, P.A., Vignoles, P.A., et al. (2018). Local low dose curcumin treatment improves functional recovery and remyelination in a rat model of sciatic nerve crush through inhibition of oxidative stress. Neuropharmacology 139, 98-116. PMid:30018000
4
https://doi.org/10.1016/j.neuropharm.2018.07.001
Chen, M.M., Qin, J., Chen, S.J., Yao, L.M., Zhang, L.U., Yin, Z.Q., Liao, H. (2017). Quercetin promotes motor and sensory function recovery following sciatic nerve-crush injury in C57BL/6J mice. J Nutr Biochem. 46, 57-67. PMid:28458138
5
https://doi.org/10.1016/j.jnutbio.2017.04.006
Imran, A., Xiao, L., Ahmad, W., Anwar, H., Rasul, A., Imran, M., Aziz, N., et al. (2019). Foeniculum vulgare (Fennel) promotes functional recovery and ameliorates oxidative stress following a lesion to the sciatic nerve in mouse model. J Food Biochem. 43(9): e12983.
6
https://doi.org/10.1111/jfbc.12983
Elfar, J.C., Jacobson, J.A., Puzas, J.E., Rosier, R.N., Zuscik, M.J. (2008). Erythropoietin accelerates functional recovery after peripheral nerve injury. J Bone Joint Surg Am. 90(8): 1644-1653. PMid:18676893 PMCid:PMC4470043
7
https://doi.org/10.2106/JBJS.G.00557
Bhandari, P.S. (2019). Management of peripheral nerve injury. J Clin Orthop Trauma. 10(5): 862-866. PMid:31528058 PMCid:PMC6739245
8
https://doi.org/10.1016/j.jcot.2019.08.003
Mekaj, A.Y., Morina, A.A., Bytyqi, C.I., Mekaj, Y.H., Duci, S.B. (2014). Application of topical pharmacological agents at the site of peripheral nerve injury and methods used for evaluating the success of the regenerative process. J Orthop Surg Res. 9, 94. PMid:25303779 PMCid:PMC4198735
9
https://doi.org/10.1186/s13018-014-0094-3
Grinsell, D., Keating, C.P. (2014). Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. BioMed Res Int. 2014, 698256. PMid:25276813 PMCid:PMC4167952
10
https://doi.org/10.1155/2014/698256
Davis, B., Hilgart, D., Erickson, S., Labroo, P., Burton, J., Sant, H., Shea, J., et al. (2019). Local FK506 delivery at the direct nerve repair site improves nerve regeneration. Muscle Nerve 60(5): 613-620. PMid:31397908
11
https://doi.org/10.1002/mus.26656
Wang, T., Ito, A., Aoyama, T., Nakahara, R., Nakahata, A., Ji, X., Zhang, J., et al. (2018). Functional evaluation outcomes correlate with histomorphometric changes in the rat sciatic nerve crush injury model: A comparison between sciatic functional index and kinematic analysis. PLoS One 13(12): e0208985. PMid:30540822 PMCid:PMC6291147
12
https://doi.org/10.1371/journal.pone.0208985
Feng, X., Yuan, W. (2015). Dexamethasone enhanced functional recovery after sciatic nerve crush injury in rats. BioMed Res Int. 2015: 627923. PMid:25839037 PMCid:PMC4369935
13
https://doi.org/10.1155/2015/627923
Somay, H., Emon, S.T., Uslu, S., Orakdogen, M., Meric, Z.C., Ince, U., Hakan, T. (2017). The histological effects of ozone therapy on sciatic nerve crush injury in rats. World Neurosurg. 105: 702-708. PMid:28587982
14
https://doi.org/10.1016/j.wneu.2017.05.161
Suslu, H., Altun, M., Erdivanli, B., Turan Suslu, H. (2013). Comparison of the effects of local and systemic dexamethasone on the rat traumatic sciatic nerve model. Turk Neurosurg. 23(5): 623-629.
15
Saffari, T.M., Bedar, M., Zuidam, J.M., Shin, A.Y., Baan, C.C., Hesselink, D.A., Hundepool, C.A. (2019). Exploring the neuroregenerative potential of tacrolimus. Expert Rev Clin Pharmacol. 12(11): 1047-1057. PMid:31575290
16
https://doi.org/10.1080/17512433.2019.1675507
Konofaos, P., Terzis, J.K. (2013). FK506 and nerve regeneration: past, present, and future. J Reconstr Microsurg. 29(3): 141-148. PMid:23322540
17
https://doi.org/10.1055/s-0032-1333314
Wang, M.S., Zeleny-Pooley, M., Gold, B.G. (1997). Comparative dose-dependence study of FK506 and cyclosporin A on the rate of axonal regeneration in the rat sciatic nerve. J Pharmacol Exp Ther. 282(2): 1084-1093.
18
Snyder, A.K., Fox, I.K., Nichols, C.M., Rickman, S.R., Hunter, D.A., Tung, T.H., Mackinnon, S.E. (2006). Neuroregenerative effects of preinjury FK- 506 administration. Plast Reconstr Surg. 118(2): 360-367. PMid:16874203
19
https://doi.org/10.1097/01.prs.0000227628.43867.5b
Sosa, L., Reyes, O., Kuffler, D.P. (2005). Immunosuppressants: neuroprotection and promoting neurological recovery following peripheral nerve and spinal cord lesions. Exp Neurol. 195(1): 7-15. PMid:15935348
20
https://doi.org/10.1016/j.expneurol.2005.04.016
Geary, M.B., Li, H., Zingman, A., Ketz, J., Zuscik, M., de Mesy Bentley, K.L., Noble, M., Elfar, J.C.(2017). Erythropoietin accelerates functional recovery after moderate sciatic nerve crush injury. Muscle Nerve 56(1): 143-151. PMid:28168703 PMCid:PMC5420480
21
https://doi.org/10.1002/mus.25459
Yin, Z.S., Zhang, H., Gao, W. (2010). Erythropoietin promotes functional recovery and enhances nerve regeneration after peripheral nerve injury in rats. AJNR Am J Neuroradiol. 31(3): 509-515. PMid:20037135 PMCid:PMC7963987
22
https://doi.org/10.3174/ajnr.A1820
Sundem, L., Chris Tseng, K.C., Li, H., Ketz, J., Noble, M., Elfar, J. (2016). Erythropoietin enhanced recovery after traumatic nerve injury: myelination and localized effects. J Hand Surg Am. 41(10): 999- 1010. PMid:27593486 PMCid:PMC5053901
23
https://doi.org/10.1016/j.jhsa.2016.08.002
Uzun, T., Toptas, O., Saylan, A., Carver, H., Turkoglu, S.A. (2019). Evaluation and comparison of the effects of artesunate, dexamethasone, and tacrolimus on sciatic nerve regeneration. J Oral Maxillofac Surg. 77(5): 1092.e1-1092.e12. PMid:30689960
24
https://doi.org/10.1016/j.joms.2018.12.019
de Souza, L.G., Marcolino, A.M., Kuriki, H.U., Gonçalves, E.C.D., Fonseca, M.C.R., Barbosa, R.I. (2018). Comparative effect of photobiomodulation associated with dexamethasone after sciatic nerve injury model. Lasers Med Sci. 33(6): 1341-1349. PMid:29611064
25
https://doi.org/10.1007/s10103-018-2494-9
Sun, H., Yang, T., Li, Q., Zhu, Z., Wang, L., Bai, G., Li, D., et al. (2012). Dexamethasone and vitamin B(12) synergistically promote peripheral nerve regeneration in rats by upregulating the expression of brain-derived neurotrophic factor. Arch Med Sci. 8(5): 924-930. PMid:23185205 PMCid:PMC3506245
26
https://doi.org/10.5114/aoms.2012.31623
Que, J., Cao, Q., Sui, T., Du, S., Kong, D., Cao, X. (2013). Effect of FK506 in reducing scar formation by inducing fibroblast apoptosis after sciatic nerve injury in rats. Cell Death Dis. 4(3): e526. PMid:23470533 PMCid:PMC3613834
27
https://doi.org/10.1038/cddis.2013.56
Inserra, M.M., Bloch, D.A., Terris, D.J. (1998). Functional indices for sciatic, peroneal, and posterior tibial nerve lesions in the mouse. Microsurgery 18(2): 119-124.
28
https://doi.org/10.1002/(SICI)1098-2752(1998)18:2<119::AID-MICR10>3.0.CO;2-0
Petersen, J., Russell, L., Andrus, K., MacKinnon, M., Silver, J., Kliot, M. (1996). Reduction of extraneural scarring by ADCON-T/N after surgical intervention. Neurosurgery 38(5): 976-983. PMid:8727824
29
https://doi.org/10.1097/00006123-199605000-00025
Yang, R.K., Lowe, J.B., Sobol, J.B., Sen, S.K., Hunter, D.A., Mackinnon, S.E. (2003). Dosedependent effects of FK506 on neuroregeneration in a rat model. Plast Reconst Surg. 112(7): 1832-1840. PMid:14663227
30
https://doi.org/10.1097/01.PRS.0000091167.27303.18
Labroo, P., Shea, J., Sant, H., Gale, B., Agarwal, J. (2017). Effect of combining FK506 and neurotrophins on neurite branching and elongation. Muscle Nerve 55(4): 570-581. PMid:27503321 PMCid:PMC5517102
31
https://doi.org/10.1002/mus.25370
Shahraki, M., Mohammadi, R., Najafpour, A. (2015). Influence of tacrolimus (FK506) on nerve regeneration using allografts: a rat sciatic nerve model. J Oral Maxillofac Surg. 73(7): 1438.e1-9. PMid:25869987
32
https://doi.org/10.1016/j.joms.2015.03.032
Udina, E., Voda, J., Gold, B.G., Navarro, X. (2002). Comparative dose-dependence study of FK506 on transected mouse sciatic nerve repaired by allograft or xenograft. J Peripher Nerv Syst. 8(3): 145-154. PMid:12904235
33
https://doi.org/10.1046/j.1529-8027.2003.03020.x
de Mesquita Coutinho, P.R., Cristante, A.F., de Barros Filho, T.E.P., Ferreira, R., Dos Santos, G.B. (2016). Effects of tacrolimus and erythropoietin in experimental spinal cord lesion in rats: functional and histological evaluation. Spinal Cord. 54(6): 439-444. PMid:26481712 PMCid:PMC5399139
34
https://doi.org/10.1038/sc.2015.172
Lykissas, M.G., Sakellariou, E., Vekris, M.D., Kontogeorgakos, V.A., Batistatou, A.K., Mitsionis, G.I., Beris, A.E. (2007). Axonal regeneration stimulated by erythropoietin: an experimental study in rats. J Neurosci Methods. 164(1): 107-115. PMid:17532473
35
https://doi.org/10.1016/j.jneumeth.2007.04.008
Yan, Y., Sun, H.H., Hunter, D.A., Mackinnon, S.E., Johnson, P.J. (2012). Efficacy of short-term FK506 administration on accelerating nerve regeneration. Neurorehabil Neural Repair. 26(6): 570-580. PMid:22291040
36
https://doi.org/10.1177/1545968311431965
Mekaj, A.Y., Manxhuka-Kerliu, S., Morina, A.A., Duci, S.B., Shahini, L., Mekaj, Y.H. (2017). Effects of hyaluronic acid and tacrolimus on the prevention of perineural scar formation and on nerve regeneration after sciatic nerve repair in a rabbit model. Eur J Trauma Emerg Surg. 43(4): 497-504. PMid:27194249
37
https://doi.org/10.1007/s00068-016-0683-4
Ülger, M., Sezer, G., Özyazgan, İ., Özocak, H., Yay, A., Balcıoğlu, E., Yalçın, B., et al. (2021). The effect of erythropoietin and umbilical cord-derived mesenchymal stem cells on nerve regeneration in rats with sciatic nerve injury. J Chem Neuroanat. 114, 101958. PMid:33864937
38
https://doi.org/10.1016/j.jchemneu.2021.101958
Yin, Y., Xiao, G., Zhang, K., Ying, G., Xu, H., De Melo, B.A.G., Li, S., et al. (2018). Tacrolimus and nerve growth factor treated allografts for neural tissue regeneration. ACS Chem Neurosci. 10(3): 1411-1419. PMid:30525428
39
https://doi.org/10.1021/acschemneuro.8b00452
Lee, J.I., Min Hur, J., You, J., Lee, D.K. (2020). Functional recovery with histomorphometric analysis of nerves and muscles after combination treatment with erythropoietin and dexamethasone in acute peripheral nerve injury. PLoS One 15(9): e0238208. PMid:32881928 PMCid:PMC7470391
40
https://doi.org/10.1371/journal.pone.0238208