ORIGINAL_SCIENTIFIC_ARTICLE THE EFFECTS OF TACROLIMUS AND ERYTHROPOIETIN ON HISTOPATHOLOGIC AND FUNCTIONAL RECOVERY OF SCIATIC NERVE CRUSH IN MICE Currently, despite decades of trial and error, peripheral nerve injury is an impenetrable clinical dilemma. Any proven effective pharmacologic agent leads to a decisive leap forward to the clinical management of neuropathies. This study investigated the effects of tacrolimus and erythropoietin on sciatic nerve regeneration. Twenty-three mice were randomly assigned to tacrolimus, erythropoietin, tacrolimus + erythropoietin, control, and sham groups following sciatic nerve crush via hemostatic forceps. Medications were administered for 28 consecutive days. The sham group received neither crush injury nor medication. Histopathologic, immunohistochemical, and walking track analyses were performed. In the erythropoietin group, axonal swelling was significantly reduced and the average axonal number significantly recovered up to 75% of normal nerve compared to other groups. Marked immunoreactivity to GFAP and S-100 protein was present in the tacrolimus group. Nevertheless, at least moderate GFAP and S-100 expressions were observed in all of the groups. Functional recovery was superior in the tacrolimus group after 14 days, although a complete return to near-normal function was achieved in all groups after 28 days, regardless of the medication used. Our data supported the neurotrophic effects of tacrolimus and erythropoietin; however, not enough data was gathered to confirm their synergistic effects. Whether these results are extensible to clinical scenarios requires further detailed investigations. https://macvetrev.mk/LoadArticlePdf/361 2023-6-30 147 163 https://doi.org/10.2478/macvetrev-2023-0020 crush injury erythropoietin regeneration sciatic nerve tacrolimus Kimia Mansouri false 1 Department of Clinical Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran AUTHOR Hamidreza Fattahian hamidrezafattahian@yahoo.com false 2 Department of Clinical Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran LEAD_AUTHOR Alireza Jahandideh false 3 Department of Clinical Sciences, Science and Research Branch, Islamic Azad University, Tehran, Iran AUTHOR Hesameddin Akbarein false 4 Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran AUTHOR Jones, S., Eisenberg, H.M., Jia, X. (2016). Advances and future applications of augmented peripheral nerve regeneration. Int J Mol Sci. 17(9): 1494. PMid:27618010 PMCid:PMC5037771 1 https://doi.org/10.3390/ijms17091494 Panagopoulos, G.N., Megaloikonomos, P.D., Mavrogenis, A.F. (2017). The present and future for peripheral nerve regeneration. Orthopedics 40(1): e141-e156. 2 https://doi.org/10.3928/01477447-20161019-01 Labroo, P., Ho, S., Sant, H., Shea, J., Gale, B.K., Agarwal, J. (2016). Controlled delivery of FK506 to improve nerve regeneration. Shock 46(3S): 154-159. PMid:27058050 3 https://doi.org/10.1097/SHK.0000000000000628 Caillaud, M., Chantemargue, B., Richard, L., Vignaud, L., Favreau, F., Faye, P.A., Vignoles, P.A., et al. (2018). Local low dose curcumin treatment improves functional recovery and remyelination in a rat model of sciatic nerve crush through inhibition of oxidative stress. Neuropharmacology 139, 98-116. PMid:30018000 4 https://doi.org/10.1016/j.neuropharm.2018.07.001 Chen, M.M., Qin, J., Chen, S.J., Yao, L.M., Zhang, L.U., Yin, Z.Q., Liao, H. (2017). Quercetin promotes motor and sensory function recovery following sciatic nerve-crush injury in C57BL/6J mice. J Nutr Biochem. 46, 57-67. PMid:28458138 5 https://doi.org/10.1016/j.jnutbio.2017.04.006 Imran, A., Xiao, L., Ahmad, W., Anwar, H., Rasul, A., Imran, M., Aziz, N., et al. (2019). Foeniculum vulgare (Fennel) promotes functional recovery and ameliorates oxidative stress following a lesion to the sciatic nerve in mouse model. J Food Biochem. 43(9): e12983. 6 https://doi.org/10.1111/jfbc.12983 Elfar, J.C., Jacobson, J.A., Puzas, J.E., Rosier, R.N., Zuscik, M.J. (2008). Erythropoietin accelerates functional recovery after peripheral nerve injury. J Bone Joint Surg Am. 90(8): 1644-1653. PMid:18676893 PMCid:PMC4470043 7 https://doi.org/10.2106/JBJS.G.00557 Bhandari, P.S. (2019). Management of peripheral nerve injury. J Clin Orthop Trauma. 10(5): 862-866. PMid:31528058 PMCid:PMC6739245 8 https://doi.org/10.1016/j.jcot.2019.08.003 Mekaj, A.Y., Morina, A.A., Bytyqi, C.I., Mekaj, Y.H., Duci, S.B. (2014). Application of topical pharmacological agents at the site of peripheral nerve injury and methods used for evaluating the success of the regenerative process. J Orthop Surg Res. 9, 94. PMid:25303779 PMCid:PMC4198735 9 https://doi.org/10.1186/s13018-014-0094-3 Grinsell, D., Keating, C.P. (2014). Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. BioMed Res Int. 2014, 698256. PMid:25276813 PMCid:PMC4167952 10 https://doi.org/10.1155/2014/698256 Davis, B., Hilgart, D., Erickson, S., Labroo, P., Burton, J., Sant, H., Shea, J., et al. (2019). Local FK506 delivery at the direct nerve repair site improves nerve regeneration. Muscle Nerve 60(5): 613-620. PMid:31397908 11 https://doi.org/10.1002/mus.26656 Wang, T., Ito, A., Aoyama, T., Nakahara, R., Nakahata, A., Ji, X., Zhang, J., et al. (2018). Functional evaluation outcomes correlate with histomorphometric changes in the rat sciatic nerve crush injury model: A comparison between sciatic functional index and kinematic analysis. PLoS One 13(12): e0208985. PMid:30540822 PMCid:PMC6291147 12 https://doi.org/10.1371/journal.pone.0208985 Feng, X., Yuan, W. (2015). Dexamethasone enhanced functional recovery after sciatic nerve crush injury in rats. BioMed Res Int. 2015: 627923. PMid:25839037 PMCid:PMC4369935 13 https://doi.org/10.1155/2015/627923 Somay, H., Emon, S.T., Uslu, S., Orakdogen, M., Meric, Z.C., Ince, U., Hakan, T. (2017). The histological effects of ozone therapy on sciatic nerve crush injury in rats. World Neurosurg. 105: 702-708. PMid:28587982 14 https://doi.org/10.1016/j.wneu.2017.05.161 Suslu, H., Altun, M., Erdivanli, B., Turan Suslu, H. (2013). Comparison of the effects of local and systemic dexamethasone on the rat traumatic sciatic nerve model. Turk Neurosurg. 23(5): 623-629. 15 Saffari, T.M., Bedar, M., Zuidam, J.M., Shin, A.Y., Baan, C.C., Hesselink, D.A., Hundepool, C.A. (2019). Exploring the neuroregenerative potential of tacrolimus. Expert Rev Clin Pharmacol. 12(11): 1047-1057. PMid:31575290 16 https://doi.org/10.1080/17512433.2019.1675507 Konofaos, P., Terzis, J.K. (2013). FK506 and nerve regeneration: past, present, and future. J Reconstr Microsurg. 29(3): 141-148. PMid:23322540 17 https://doi.org/10.1055/s-0032-1333314 Wang, M.S., Zeleny-Pooley, M., Gold, B.G. (1997). Comparative dose-dependence study of FK506 and cyclosporin A on the rate of axonal regeneration in the rat sciatic nerve. J Pharmacol Exp Ther. 282(2): 1084-1093. 18 Snyder, A.K., Fox, I.K., Nichols, C.M., Rickman, S.R., Hunter, D.A., Tung, T.H., Mackinnon, S.E. (2006). Neuroregenerative effects of preinjury FK- 506 administration. Plast Reconstr Surg. 118(2): 360-367. PMid:16874203 19 https://doi.org/10.1097/01.prs.0000227628.43867.5b Sosa, L., Reyes, O., Kuffler, D.P. (2005). Immunosuppressants: neuroprotection and promoting neurological recovery following peripheral nerve and spinal cord lesions. Exp Neurol. 195(1): 7-15. PMid:15935348 20 https://doi.org/10.1016/j.expneurol.2005.04.016 Geary, M.B., Li, H., Zingman, A., Ketz, J., Zuscik, M., de Mesy Bentley, K.L., Noble, M., Elfar, J.C.(2017). Erythropoietin accelerates functional recovery after moderate sciatic nerve crush injury. Muscle Nerve 56(1): 143-151. PMid:28168703 PMCid:PMC5420480 21 https://doi.org/10.1002/mus.25459 Yin, Z.S., Zhang, H., Gao, W. (2010). Erythropoietin promotes functional recovery and enhances nerve regeneration after peripheral nerve injury in rats. AJNR Am J Neuroradiol. 31(3): 509-515. PMid:20037135 PMCid:PMC7963987 22 https://doi.org/10.3174/ajnr.A1820 Sundem, L., Chris Tseng, K.C., Li, H., Ketz, J., Noble, M., Elfar, J. (2016). Erythropoietin enhanced recovery after traumatic nerve injury: myelination and localized effects. J Hand Surg Am. 41(10): 999- 1010. PMid:27593486 PMCid:PMC5053901 23 https://doi.org/10.1016/j.jhsa.2016.08.002 Uzun, T., Toptas, O., Saylan, A., Carver, H., Turkoglu, S.A. (2019). Evaluation and comparison of the effects of artesunate, dexamethasone, and tacrolimus on sciatic nerve regeneration. J Oral Maxillofac Surg. 77(5): 1092.e1-1092.e12. PMid:30689960 24 https://doi.org/10.1016/j.joms.2018.12.019 de Souza, L.G., Marcolino, A.M., Kuriki, H.U., Gonçalves, E.C.D., Fonseca, M.C.R., Barbosa, R.I. (2018). Comparative effect of photobiomodulation associated with dexamethasone after sciatic nerve injury model. Lasers Med Sci. 33(6): 1341-1349. PMid:29611064 25 https://doi.org/10.1007/s10103-018-2494-9 Sun, H., Yang, T., Li, Q., Zhu, Z., Wang, L., Bai, G., Li, D., et al. (2012). Dexamethasone and vitamin B(12) synergistically promote peripheral nerve regeneration in rats by upregulating the expression of brain-derived neurotrophic factor. Arch Med Sci. 8(5): 924-930. PMid:23185205 PMCid:PMC3506245 26 https://doi.org/10.5114/aoms.2012.31623 Que, J., Cao, Q., Sui, T., Du, S., Kong, D., Cao, X. (2013). Effect of FK506 in reducing scar formation by inducing fibroblast apoptosis after sciatic nerve injury in rats. Cell Death Dis. 4(3): e526. PMid:23470533 PMCid:PMC3613834 27 https://doi.org/10.1038/cddis.2013.56 Inserra, M.M., Bloch, D.A., Terris, D.J. (1998). Functional indices for sciatic, peroneal, and posterior tibial nerve lesions in the mouse. Microsurgery 18(2): 119-124. 28 https://doi.org/10.1002/(SICI)1098-2752(1998)18:2<119::AID-MICR10>3.0.CO;2-0 Petersen, J., Russell, L., Andrus, K., MacKinnon, M., Silver, J., Kliot, M. (1996). Reduction of extraneural scarring by ADCON-T/N after surgical intervention. Neurosurgery 38(5): 976-983. PMid:8727824 29 https://doi.org/10.1097/00006123-199605000-00025 Yang, R.K., Lowe, J.B., Sobol, J.B., Sen, S.K., Hunter, D.A., Mackinnon, S.E. (2003). Dosedependent effects of FK506 on neuroregeneration in a rat model. Plast Reconst Surg. 112(7): 1832-1840. PMid:14663227 30 https://doi.org/10.1097/01.PRS.0000091167.27303.18 Labroo, P., Shea, J., Sant, H., Gale, B., Agarwal, J. (2017). Effect of combining FK506 and neurotrophins on neurite branching and elongation. Muscle Nerve 55(4): 570-581. PMid:27503321 PMCid:PMC5517102 31 https://doi.org/10.1002/mus.25370 Shahraki, M., Mohammadi, R., Najafpour, A. (2015). Influence of tacrolimus (FK506) on nerve regeneration using allografts: a rat sciatic nerve model. J Oral Maxillofac Surg. 73(7): 1438.e1-9. PMid:25869987 32 https://doi.org/10.1016/j.joms.2015.03.032 Udina, E., Voda, J., Gold, B.G., Navarro, X. (2002). Comparative dose-dependence study of FK506 on transected mouse sciatic nerve repaired by allograft or xenograft. J Peripher Nerv Syst. 8(3): 145-154. PMid:12904235 33 https://doi.org/10.1046/j.1529-8027.2003.03020.x de Mesquita Coutinho, P.R., Cristante, A.F., de Barros Filho, T.E.P., Ferreira, R., Dos Santos, G.B. (2016). Effects of tacrolimus and erythropoietin in experimental spinal cord lesion in rats: functional and histological evaluation. Spinal Cord. 54(6): 439-444. PMid:26481712 PMCid:PMC5399139 34 https://doi.org/10.1038/sc.2015.172 Lykissas, M.G., Sakellariou, E., Vekris, M.D., Kontogeorgakos, V.A., Batistatou, A.K., Mitsionis, G.I., Beris, A.E. (2007). Axonal regeneration stimulated by erythropoietin: an experimental study in rats. J Neurosci Methods. 164(1): 107-115. PMid:17532473 35 https://doi.org/10.1016/j.jneumeth.2007.04.008 Yan, Y., Sun, H.H., Hunter, D.A., Mackinnon, S.E., Johnson, P.J. (2012). Efficacy of short-term FK506 administration on accelerating nerve regeneration. Neurorehabil Neural Repair. 26(6): 570-580. PMid:22291040 36 https://doi.org/10.1177/1545968311431965 Mekaj, A.Y., Manxhuka-Kerliu, S., Morina, A.A., Duci, S.B., Shahini, L., Mekaj, Y.H. (2017). Effects of hyaluronic acid and tacrolimus on the prevention of perineural scar formation and on nerve regeneration after sciatic nerve repair in a rabbit model. Eur J Trauma Emerg Surg. 43(4): 497-504. PMid:27194249 37 https://doi.org/10.1007/s00068-016-0683-4 Ülger, M., Sezer, G., Özyazgan, İ., Özocak, H., Yay, A., Balcıoğlu, E., Yalçın, B., et al. (2021). The effect of erythropoietin and umbilical cord-derived mesenchymal stem cells on nerve regeneration in rats with sciatic nerve injury. J Chem Neuroanat. 114, 101958. PMid:33864937 38 https://doi.org/10.1016/j.jchemneu.2021.101958 Yin, Y., Xiao, G., Zhang, K., Ying, G., Xu, H., De Melo, B.A.G., Li, S., et al. (2018). Tacrolimus and nerve growth factor treated allografts for neural tissue regeneration. ACS Chem Neurosci. 10(3): 1411-1419. PMid:30525428 39 https://doi.org/10.1021/acschemneuro.8b00452 Lee, J.I., Min Hur, J., You, J., Lee, D.K. (2020). Functional recovery with histomorphometric analysis of nerves and muscles after combination treatment with erythropoietin and dexamethasone in acute peripheral nerve injury. PLoS One 15(9): e0238208. PMid:32881928 PMCid:PMC7470391 40 https://doi.org/10.1371/journal.pone.0238208