Short Communication
IMMUNOHISTOCHEMICAL DETECTION OF AXONAL INJURY IN CHIMPANZEE (PAN TROGLODYTES) WITH TRAUMATIC AND FATAL BRAIN INJURY
Estimating the time of death after traumatic brain injury (TBI) in wildlife is a significant challenge in forensic veterinary medicine. The understanding of histopathological changes and predicting the survival time can prompt critical emergency measures and health management strategies for animals in managed care. Glial fibrillary acidic protein (GFAP) is a wellestablished astrocytic biomarker for diagnosing, monitoring, and predicting TBI outcomes. Moreover, the buildup of Beta- Amyloid Precursor Protein (βAPP) resulting from axonal damage is an energetic process intricately connected to the survival period following the injury. To date, no study has explored the accumulation of GFAP and βAPP in TBI chimpanzees. In human studies, the earliest reported time for detecting axonal injury postmortem in TBI using βAPP is approximately 30 minutes. This study aimed to investigate whether GFAP and βAPP staining can be used to detect postmortem axonal injury within 30 minutes in TBI chimpanzees. Cerebral and cerebellar tissues from a postmortem TBI chimpanzee and control samples were screened for immunopositivity for GFAP and βAPP in neurons using immunohistochemistry and immunofluorescence. The results suggested that neuronal immunopositivity for GFAP was likely a staining artifact, as negative controls also showed neuronal GFAP staining. However, it was not easy to assume the absence of post-traumatic neuronal GFAP. Conversely, the βAPP assay results indicated that axonal damage can be detected within 22 minutes after death, marking the fastest recorded time to date and aiding in diagnosing severe TBI with short survival times. In conclusion, we demonstrated that the axonal damage in captivated chimpanzee caused by severe and sudden concussion can be detected with βAPP staining within 22 minutes.
https://macvetrev.mk/LoadArticlePdf/361
2024-10-15
179
189
https://doi.org/10.2478/macvetrev-2024-0018
chimpanzee,
time of death
GFAP
BAPP
TBI
axonal injury
Peyman
Mohammadzadeh
peymanpathologist@iausdj.ac.ir
false
1
Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran
LEAD_AUTHOR
Ahmad
Reza
Baharvand
false
2
Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran
AUTHOR
Sajjad
Mohammadi
false
3
Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran
AUTHOR
Ramin
Fooladi
false
4
Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran
AUTHOR
Kimia
Azimi
false
5
Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran
AUTHOR
Erfan
Eftekhar
false
6
Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran
AUTHOR
Spiezio, C., Vaglio, S., Vandelle, C., Sandri, C., Regaiolli, B. (2021). Effects of rearing on the behaviour of Zoo-housed chimpanzees (Pan troglodytes). Folia Primatol (Basel). 92(2): 91-102. PMid:33789306
1
https://doi.org/10.1159/000515127
McBride, W.R., Eltman, N.R, Swanson, R.L. 2nd. (2023). Blood-based biomarkers in traumatic brain injury: a narrative review with implications for the legal system. Cureus 15(6): e40417.
2
https://doi.org/10.7759/cureus.40417
Johnson, N.H., Kerr, N.A., de Rivero Vaccari, J.P., Bramlett, H.M., Keane, R.W., Dietrich, W.D. (2023). Genetic predisposition to Alzheimer’s disease alters inflammasome activity after traumatic brain injury. Transl Res. 257, 66-77. PMid:36758791
3
https://doi.org/10.1016/j.trsl.2023.02.001
Kim, K.Y., Shin, K.Y., Chang, K.A. (2023). GFAP as a potential biomarker for Alzheimer’s disease: a systematic review and meta-analysis. Cells 12(9): 1309. PMid:37174709 PMCid:PMC10177296
4
https://doi.org/10.3390/cells12091309
Honda, M., Tsuruta, R., Kaneko, T., Kasaoka, S., Yagi, T., Todani, M., Fujita, M., Izumi, T., Maekawa, T. (2010). Serum glial fibrillary acidic protein is a particular biomarker for traumatic brain injury in humans compared with S-100B and neuron-specific enolase. J Trauma. 69(1): 104-109. PMid:20093985
5
https://doi.org/10.1097/TA.0b013e3181bbd485
Butruille, L., Batailler, M., Cateau, M.L., Sharif, A., Leysen, V., Prévot, V., Vaudin, P., Pillon, D., Migaud, M. (2022). Selective depletion of adult GFAP-expressing tanycytes leads to hypogonadotropic hypogonadism in males. Front Endocrinol (Lausanne). 13, 869019. PMid:35370973 PMCid:PMC8966543
6
https://doi.org/10.3389/fendo.2022.869019
Simone, M., De Giacomo, A., Palumbi, R., Palazzo, C., Lucisano, G., Pompamea, F., Micella, S., Pascali, M., Gabellone, A., Marzulli, L., Giordano, P., Gargano, C.D., Margari, L., Frigeri, A., Ruggieri, M. (2023). Serum neurofilament light chain and glial fibrillary acidic protein as potential diagnostic biomarkers in autism spectrum disorders: a preliminary study. Int J Mol Sci. 24(3): 3057. PMid:36769380 PMCid:PMC9917818
7
https://doi.org/10.3390/ijms24033057
Chen, Q., Li, L., Xu, L., Yang, B., Huang, Y., Qiao, D., Yue, X. (2024). Proteomic analysis discovers potential biomarkers of early traumatic axonal injury in the brainstem. Int J Legal Med. 138(1): 207-227. PMid:37338605
8
https://doi.org/10.1007/s00414-023-03039-5
Sharma, M., Subramaniam, A., Sengar, K., Suri, V., Agrawal, D., Chakraborty, N., Pandey, R.M., Malhotra, R., Lalwani, S. (2023). Pathological spectrum and β-APP immunoreactivity as a diagnostic tool of diffuse axonal injury following traumatic brain injury: a novel classification. J Lab Physicians. 15(3): 399-408. PMid:37564231 PMCid:PMC10411120
9
https://doi.org/10.1055/s-0043-1761926
Zhang, J.K., Jayasekera, D., Song, C., Greenberg, J.K., Javeed, S., Dibble, C.F., Blum, J., Sun, P., Song, S.K., Ray, W.Z. (2023). Diffusion basis spectrum imaging provides insights into cervical spondylotic myelopathy pathology. Neurosurgery. 92(1): 102-109. PMid:36519861 PMCid:PMC10158908
10
https://doi.org/10.1227/neu.0000000000002183
Berth, S.H., Lloyd, T.E. (2023). Disruption of axonal transport in neurodegeneration. J Clin Invest. 133(11): e168554. PMid:37259916 PMCid:PMC10232001
11
https://doi.org/10.1172/JCI168554
Wang, F., Yang, T., Li, J., Zhou, X., Liu, L. (2019). Histopathology mapping of biochemical changes in diffuse axonal injury by FTIR micro-spectroscopy. Leg Med (Tokyo). 37, 76-82. PMid:30772767
12
https://doi.org/10.1016/j.legalmed.2019.02.001
Nevitt, B.N., Robinson, N., Kratz, G., Johnston, M.S. (2015). Effectiveness of physical therapy as an adjunctive treatment for trauma-induced chronic torticollis in raptors. J Avian Med Surg. 29(1): 30-39. PMid:25867664
13
https://doi.org/10.1647/2014-003
Liu, X.L., Gao, C.C., Qi, M., Han, Y.L., Zhou, M.L., Zheng, L.R. (2021). Expression of FOXO transcription factors in the brain following traumatic brain injury. Neurosci Lett. 753, 135882. PMid:33838260
14
https://doi.org/10.1016/j.neulet.2021.135882
Bertozzi, G., Maglietta, F., Sessa, F., Scoto, E., Cipolloni, L., Di Mizio, G., Salerno, M., Pomara, C. (2020). Traumatic brain injury: a forensic approach: a literature review. Curr Neuropharmacol. 18(6): 538-550.
15
PMid:31686630 PMCid:PMC7457403
Wadman, M. (2011). Animal rights: chimpanzee research on trial. Nature. 474(7351): 268-271. PMid:21677722
16
https://doi.org/10.1038/474268a
Anderson, J.R. (2018). Chimpanzees and death. Philos Trans R Soc Lond B Biol Sci. 373(1754): 20170257. PMid:30012743 PMCid:PMC6053983
17
https://doi.org/10.1098/rstb.2017.0257
Laurence, H., Kumar, S., Owston, M.A., Lanford, R.E., Hubbard, G.B., Dick, E.J. Jr. (2017). Natural mortality and cause of death analysis of the captive chimpanzee (Pan troglodytes): a 35-year review. J Med Primatol. 46(3): 106-115. PMid:28418090 PMCid:PMC5423840
18
https://doi.org/10.1111/jmp.12267
Lammey, M.L., Lee, D.R., Ely, J.J., Sleeper, M.M. (2008). Sudden cardiac death in 13 captive chimpanzees (Pan troglodytes). J Med Primatol. 37 (Suppl 1): 39-43. PMid:18269527
19
https://doi.org/10.1111/j.1600-0684.2007.00260.x
Williams, J.M., Lonsdorf, E.V., Wilson, M.L., Schumacher-Stankey, J., Goodall, J., Pusey, A.E. (2008). Causes of death in the Kasekela chimpanzees of Gombe National Park, Tanzania. Am J Primatol. 70(8): 766-777. PMid:18506732
20
https://doi.org/10.1002/ajp.20573
Chilton, J., Wilcox, A., Lammey, M., Meyer, D. (2016). Characterization of a cardiorenal-like syndrome in aged chimpanzees (Pan troglodytes). Vet Pathol. 53(2): 417-424. PMid:26792841
21
https://doi.org/10.1177/0300985815618435
Anderson, J.R., Gillies, A., Lock, L.C. (2010.) Pan thanatology. Curr Biol. 20(8): R349-R351. PMid:21749950
22
https://doi.org/10.1016/j.cub.2010.02.010
Neal Webb, S.J., Hau, J., Schapiro, S.J. (2019). Does group size matter? Captive chimpanzee (Pan troglodytes) behavior as a function of group size and composition. Am J Primatol. 81(1): e22947. PMid:30620093 PMCid:PMC6472487
23
https://doi.org/10.1002/ajp.22947
Ross, S.R., Bloomsmith, M.A., Bettinger, L., Wagner, K.E. (2009). The influence of captive adolescent male chimpanzees on wounding: management and welfare implications. Zoo Biol. 28(6): 623-634. PMid:20014028
24
https://doi.org/10.1002/zoo.20243
Terio, K.A., Kinsel, M.J., Raphael, J., Mlengeya, T., Lipende, I., Kirchhoff, C.A., Gilagiza, B., Wilson, M.L., Kamenya, S., Estes, J.D. (2011). Pathologic lesions in chimpanzees (Pan troglodytes schweingurthii) from Gombe National Park, Tanzania, 2004-2010. J Zoo Wild Med. 42(4): 597-607. PMid:22204054 PMCid:PMC3693847
25
https://doi.org/10.1638/2010-0237.1
Firląg, M., Kamaszewski, M., Gaca, K., Bałasińska, B. (2013). Age-related changes in the central nervous system in selected domestic mammals and primates. Postepy Hig Med Dosw (Online). 67, 269-275. PMid:23619226
26
https://doi.org/10.5604/17322693.1044490
Al-Sarraj, S., Troakes, C., Rutty, G.N. (2022). Axonal injury is detected by βAPP immunohistochemistry in rapid death from head injury following road traffic collision. Int J Legal Med. 136(5): 1321-1339. PMid:35488928 PMCid:PMC9375765
27
https://doi.org/10.1007/s00414-022-02807-z
Castelli, G., Desai, K.M., Cantone, R.E. (2020). Peripheral neuropathy: evaluation and differential diagnosis. Am Fam Physician. 102(12): 732-739.
28
Sullivan, P.G., Rabchevsky, A.G., Waldmeier, P.C., Springer, J.E. (2005). Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J Neurosci Res. 79(1-2): 231-239. PMid:15573402
29
https://doi.org/10.1002/jnr.20292
Jung, S., Nah, J., Han, J., Choi, S.G., Kim, H., Park, J., Pyo, H.K., Jung, Y.K. (2016). Dual-specificity phosphatase 26 (DUSP26) stimulates Aβ42 generation by promoting amyloid precursor protein axonal transport during hypoxia. J Neurochem. 137(5): 770-781. PMid:26924229
30
https://doi.org/10.1111/jnc.13597
Koludarova, E.M., Tuchik, E.S., Zorikov, O.V. (2021). Aksotomiya v posmertnoi diagnostike diffuznogo aksonal’nogo povrezhdeniya golovnogo mozga [Axotomy in the postmortem diagnosis of diffuse axonal brain injury]. Sud Med Ekspert. 64(2): 14-17. [In Russian] PMid:33739062
31
https://doi.org/10.17116/sudmed20216402114
Volkenstein, S., Brors, D., Hansen, S., Berend, A.,Mlynski, R., Aletsee, C., Dazert, S. (2009). Auditory development in progressive motor neuronopathy mouse mutants. Neurosci Lett. 465(1): 45-49. PMid:19735697
32
https://doi.org/10.1016/j.neulet.2009.09.006