Short Communication IMMUNOHISTOCHEMICAL DETECTION OF AXONAL INJURY IN CHIMPANZEE (PAN TROGLODYTES) WITH TRAUMATIC AND FATAL BRAIN INJURY Estimating the time of death after traumatic brain injury (TBI) in wildlife is a significant challenge in forensic veterinary medicine. The understanding of histopathological changes and predicting the survival time can prompt critical emergency measures and health management strategies for animals in managed care. Glial fibrillary acidic protein (GFAP) is a wellestablished astrocytic biomarker for diagnosing, monitoring, and predicting TBI outcomes. Moreover, the buildup of Beta- Amyloid Precursor Protein (βAPP) resulting from axonal damage is an energetic process intricately connected to the survival period following the injury. To date, no study has explored the accumulation of GFAP and βAPP in TBI chimpanzees. In human studies, the earliest reported time for detecting axonal injury postmortem in TBI using βAPP is approximately 30 minutes. This study aimed to investigate whether GFAP and βAPP staining can be used to detect postmortem axonal injury within 30 minutes in TBI chimpanzees. Cerebral and cerebellar tissues from a postmortem TBI chimpanzee and control samples were screened for immunopositivity for GFAP and βAPP in neurons using immunohistochemistry and immunofluorescence. The results suggested that neuronal immunopositivity for GFAP was likely a staining artifact, as negative controls also showed neuronal GFAP staining. However, it was not easy to assume the absence of post-traumatic neuronal GFAP. Conversely, the βAPP assay results indicated that axonal damage can be detected within 22 minutes after death, marking the fastest recorded time to date and aiding in diagnosing severe TBI with short survival times. In conclusion, we demonstrated that the axonal damage in captivated chimpanzee caused by severe and sudden concussion can be detected with βAPP staining within 22 minutes. https://macvetrev.mk/LoadArticlePdf/361 2024-6-07 i xi https://doi.org/10.2478/macvetrev-2024-0018 chimpanzee, time of death GFAP BAPP TBI axonal injury Peyman Mohammadzadeh peymanpathologist@iausdj.ac.ir false 1 Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran LEAD_AUTHOR Ahmad Reza Baharvand false 2 Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran AUTHOR Sajjad Mohammadi false 3 Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran AUTHOR Ramin Fooladi false 4 Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran AUTHOR Kimia Azimi false 5 Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran AUTHOR Erfan Eftekhar false 6 Department of Pathobiology, Faculty of Veterinary Medicine, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran AUTHOR Spiezio, C., Vaglio, S., Vandelle, C., Sandri, C., Regaiolli, B. (2021). Effects of rearing on the behaviour of Zoo-housed chimpanzees (Pan troglodytes). Folia Primatol (Basel). 92(2): 91-102. PMid:33789306 1 https://doi.org/10.1159/000515127 McBride, W.R., Eltman, N.R, Swanson, R.L. 2nd. (2023). Blood-based biomarkers in traumatic brain injury: a narrative review with implications for the legal system. Cureus 15(6): e40417. 2 https://doi.org/10.7759/cureus.40417 Johnson, N.H., Kerr, N.A., de Rivero Vaccari, J.P., Bramlett, H.M., Keane, R.W., Dietrich, W.D. (2023). Genetic predisposition to Alzheimer’s disease alters inflammasome activity after traumatic brain injury. Transl Res. 257, 66-77. PMid:36758791 3 https://doi.org/10.1016/j.trsl.2023.02.001 Kim, K.Y., Shin, K.Y., Chang, K.A. (2023). GFAP as a potential biomarker for Alzheimer’s disease: a systematic review and meta-analysis. Cells 12(9): 1309. PMid:37174709 PMCid:PMC10177296 4 https://doi.org/10.3390/cells12091309 Honda, M., Tsuruta, R., Kaneko, T., Kasaoka, S., Yagi, T., Todani, M., Fujita, M., Izumi, T., Maekawa, T. (2010). Serum glial fibrillary acidic protein is a particular biomarker for traumatic brain injury in humans compared with S-100B and neuron-specific enolase. J Trauma. 69(1): 104-109. PMid:20093985 5 https://doi.org/10.1097/TA.0b013e3181bbd485 Butruille, L., Batailler, M., Cateau, M.L., Sharif, A., Leysen, V., Prévot, V., Vaudin, P., Pillon, D., Migaud, M. (2022). Selective depletion of adult GFAP-expressing tanycytes leads to hypogonadotropic hypogonadism in males. Front Endocrinol (Lausanne). 13, 869019. PMid:35370973 PMCid:PMC8966543 6 https://doi.org/10.3389/fendo.2022.869019 Simone, M., De Giacomo, A., Palumbi, R., Palazzo, C., Lucisano, G., Pompamea, F., Micella, S., Pascali, M., Gabellone, A., Marzulli, L., Giordano, P., Gargano, C.D., Margari, L., Frigeri, A., Ruggieri, M. (2023). Serum neurofilament light chain and glial fibrillary acidic protein as potential diagnostic biomarkers in autism spectrum disorders: a preliminary study. Int J Mol Sci. 24(3): 3057. PMid:36769380 PMCid:PMC9917818 7 https://doi.org/10.3390/ijms24033057 Chen, Q., Li, L., Xu, L., Yang, B., Huang, Y., Qiao, D., Yue, X. (2024). Proteomic analysis discovers potential biomarkers of early traumatic axonal injury in the brainstem. Int J Legal Med. 138(1): 207-227. PMid:37338605 8 https://doi.org/10.1007/s00414-023-03039-5 Sharma, M., Subramaniam, A., Sengar, K., Suri, V., Agrawal, D., Chakraborty, N., Pandey, R.M., Malhotra, R., Lalwani, S. (2023). Pathological spectrum and β-APP immunoreactivity as a diagnostic tool of diffuse axonal injury following traumatic brain injury: a novel classification. J Lab Physicians. 15(3): 399-408. PMid:37564231 PMCid:PMC10411120 9 https://doi.org/10.1055/s-0043-1761926 Zhang, J.K., Jayasekera, D., Song, C., Greenberg, J.K., Javeed, S., Dibble, C.F., Blum, J., Sun, P., Song, S.K., Ray, W.Z. (2023). Diffusion basis spectrum imaging provides insights into cervical spondylotic myelopathy pathology. Neurosurgery. 92(1): 102-109. PMid:36519861 PMCid:PMC10158908 10 https://doi.org/10.1227/neu.0000000000002183 Berth, S.H., Lloyd, T.E. (2023). Disruption of axonal transport in neurodegeneration. J Clin Invest. 133(11): e168554. PMid:37259916 PMCid:PMC10232001 11 https://doi.org/10.1172/JCI168554 Wang, F., Yang, T., Li, J., Zhou, X., Liu, L. (2019). Histopathology mapping of biochemical changes in diffuse axonal injury by FTIR micro-spectroscopy. Leg Med (Tokyo). 37, 76-82. PMid:30772767 12 https://doi.org/10.1016/j.legalmed.2019.02.001 Nevitt, B.N., Robinson, N., Kratz, G., Johnston, M.S. (2015). Effectiveness of physical therapy as an adjunctive treatment for trauma-induced chronic torticollis in raptors. J Avian Med Surg. 29(1): 30-39. PMid:25867664 13 https://doi.org/10.1647/2014-003 Liu, X.L., Gao, C.C., Qi, M., Han, Y.L., Zhou, M.L., Zheng, L.R. (2021). Expression of FOXO transcription factors in the brain following traumatic brain injury. Neurosci Lett. 753, 135882. PMid:33838260 14 https://doi.org/10.1016/j.neulet.2021.135882 Bertozzi, G., Maglietta, F., Sessa, F., Scoto, E., Cipolloni, L., Di Mizio, G., Salerno, M., Pomara, C. (2020). Traumatic brain injury: a forensic approach: a literature review. Curr Neuropharmacol. 18(6): 538-550. 15 PMid:31686630 PMCid:PMC7457403 Wadman, M. (2011). Animal rights: chimpanzee research on trial. Nature. 474(7351): 268-271. PMid:21677722 16 https://doi.org/10.1038/474268a Anderson, J.R. (2018). Chimpanzees and death. Philos Trans R Soc Lond B Biol Sci. 373(1754): 20170257. PMid:30012743 PMCid:PMC6053983 17 https://doi.org/10.1098/rstb.2017.0257 Laurence, H., Kumar, S., Owston, M.A., Lanford, R.E., Hubbard, G.B., Dick, E.J. Jr. (2017). Natural mortality and cause of death analysis of the captive chimpanzee (Pan troglodytes): a 35-year review. J Med Primatol. 46(3): 106-115. PMid:28418090 PMCid:PMC5423840 18 https://doi.org/10.1111/jmp.12267 Lammey, M.L., Lee, D.R., Ely, J.J., Sleeper, M.M. (2008). Sudden cardiac death in 13 captive chimpanzees (Pan troglodytes). J Med Primatol. 37 (Suppl 1): 39-43. PMid:18269527 19 https://doi.org/10.1111/j.1600-0684.2007.00260.x Williams, J.M., Lonsdorf, E.V., Wilson, M.L., Schumacher-Stankey, J., Goodall, J., Pusey, A.E. (2008). Causes of death in the Kasekela chimpanzees of Gombe National Park, Tanzania. Am J Primatol. 70(8): 766-777. PMid:18506732 20 https://doi.org/10.1002/ajp.20573 Chilton, J., Wilcox, A., Lammey, M., Meyer, D. (2016). Characterization of a cardiorenal-like syndrome in aged chimpanzees (Pan troglodytes). Vet Pathol. 53(2): 417-424. PMid:26792841 21 https://doi.org/10.1177/0300985815618435 Anderson, J.R., Gillies, A., Lock, L.C. (2010.) Pan thanatology. Curr Biol. 20(8): R349-R351. PMid:21749950 22 https://doi.org/10.1016/j.cub.2010.02.010 Neal Webb, S.J., Hau, J., Schapiro, S.J. (2019). Does group size matter? Captive chimpanzee (Pan troglodytes) behavior as a function of group size and composition. Am J Primatol. 81(1): e22947. PMid:30620093 PMCid:PMC6472487 23 https://doi.org/10.1002/ajp.22947 Ross, S.R., Bloomsmith, M.A., Bettinger, L., Wagner, K.E. (2009). The influence of captive adolescent male chimpanzees on wounding: management and welfare implications. Zoo Biol. 28(6): 623-634. PMid:20014028 24 https://doi.org/10.1002/zoo.20243 Terio, K.A., Kinsel, M.J., Raphael, J., Mlengeya, T., Lipende, I., Kirchhoff, C.A., Gilagiza, B., Wilson, M.L., Kamenya, S., Estes, J.D. (2011). Pathologic lesions in chimpanzees (Pan troglodytes schweingurthii) from Gombe National Park, Tanzania, 2004-2010. J Zoo Wild Med. 42(4): 597-607. PMid:22204054 PMCid:PMC3693847 25 https://doi.org/10.1638/2010-0237.1 Firląg, M., Kamaszewski, M., Gaca, K., Bałasińska, B. (2013). Age-related changes in the central nervous system in selected domestic mammals and primates. Postepy Hig Med Dosw (Online). 67, 269-275. PMid:23619226 26 https://doi.org/10.5604/17322693.1044490 Al-Sarraj, S., Troakes, C., Rutty, G.N. (2022). Axonal injury is detected by βAPP immunohistochemistry in rapid death from head injury following road traffic collision. Int J Legal Med. 136(5): 1321-1339. PMid:35488928 PMCid:PMC9375765 27 https://doi.org/10.1007/s00414-022-02807-z Castelli, G., Desai, K.M., Cantone, R.E. (2020). Peripheral neuropathy: evaluation and differential diagnosis. Am Fam Physician. 102(12): 732-739. 28 Sullivan, P.G., Rabchevsky, A.G., Waldmeier, P.C., Springer, J.E. (2005). Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J Neurosci Res. 79(1-2): 231-239. PMid:15573402 29 https://doi.org/10.1002/jnr.20292 Jung, S., Nah, J., Han, J., Choi, S.G., Kim, H., Park, J., Pyo, H.K., Jung, Y.K. (2016). Dual-specificity phosphatase 26 (DUSP26) stimulates Aβ42 generation by promoting amyloid precursor protein axonal transport during hypoxia. J Neurochem. 137(5): 770-781. PMid:26924229 30 https://doi.org/10.1111/jnc.13597 Koludarova, E.M., Tuchik, E.S., Zorikov, O.V. (2021). Aksotomiya v posmertnoi diagnostike diffuznogo aksonal’nogo povrezhdeniya golovnogo mozga [Axotomy in the postmortem diagnosis of diffuse axonal brain injury]. Sud Med Ekspert. 64(2): 14-17. [In Russian] PMid:33739062 31 https://doi.org/10.17116/sudmed20216402114 Volkenstein, S., Brors, D., Hansen, S., Berend, A.,Mlynski, R., Aletsee, C., Dazert, S. (2009). Auditory development in progressive motor neuronopathy mouse mutants. Neurosci Lett. 465(1): 45-49. PMid:19735697 32 https://doi.org/10.1016/j.neulet.2009.09.006