Original Scientific Article EVALUATION OF THE THERAPEUTIC EFFECTS OF SERRATIOPEPTIDASE IN CHICKS Serratiopeptidase is a zinc-containing metalloprotease primarily obtained from Serratia marcescens isolated from the silkworm guts. This study aimed to assess the antinociceptive, anti-inflammatory, and antipyretic effects of serratiopeptidase in hen chicks. It included 104 hen chicks weighing 70-90 g. The antinociception efficacy was assessed by electricalstimulation and hot-water test. Anti-inflammatory efficacy was assessed by formalin test. Assessment of therapeutic and antipyretic efficacy was determined by Baker’s yeast-induced pyrexia test. In the electrical-stimulation test, 20 and 40 mg/kg of serratiopeptidase induced an antinociceptive effect in 15% and 18%, respectively. In the hot-water test, this effect was observed in 31 and 82%, respectively. In the first phase of the formalin test, an antinociceptive effect was observed yeast. It was concluded that serratiopeptidase had good activity against pain and acute inflammation, and for the first time, it was demonstrated that serratiopeptidase ameliorated and prevented hyperthermia. https://macvetrev.mk/LoadArticlePdf/361 2024-10-15 115 122 https://doi.org/10.2478/macvetrev-2024-0021 serratiopeptidase protective fever chicks analgesic Ahmed S. Naser ahmadphd0@gmail.com false 1 College of Veterinary Medicine, University of Mosul, Mosul, Iraq LEAD_AUTHOR Yasser M. Albadrany false 2 College of Veterinary Medicine, University of Mosul, Mosul, Iraq AUTHOR Stern, C.D. (2005). The chick: a great model system becomes even greater. Dev Cell. 8(1): 9-17. PMid:15621526 1 https://doi.org/10.1016/S1534-5807(04)00425-3 Mohammad, F.K., Al-Baggou, B.K., Naser, A.S., Fadel, M.A. (2014). In vitro inhibition of plasma and brain cholinesterases of growing chicks by chlorpyrifos and dichlorvos. J Appl Anim Res. 42(4): 423-428. 2 https://doi.org/10.1080/09712119.2013.875912 Alatrushi, A.N., Naser, A.S. (2021). The safety profile of the anesthetic effect of alfaxalone and its interaction with xylazine and ketamine in chick’s model. Mac Vet Rev. 44(2): 203-209. 3 https://doi.org/10.2478/macvetrev-2021-0025 Naser, A.S., Albadrany, Y.M. (2021). The neurobehavioral effects of flumazenil in chicks. Iraqi J Vet Sci. 35(4): 783-788. 4 https://doi.org/10.33899/ijvs.2020.128443.1577 Robert, R. (2006). The ‘Miracle’ enzymeTM is serrapeptase, the 2nd gift from Silkworms. Naturally Healthy Publications 5 Carratu, L., Marangio, E., Cuomo, A., Pesci, A., Sofia, M., Barani, G. (1980). Physico-chemical and rheological research on mucolytic activity of serratiopeptidase in chronic broncho-pneumopathies. Curr Ther Res. 28, 937-951. 6 Gurung, N., Ray, S., Bose, S., Rai, V. (2013). A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int. 2013, 329121. PMid:24106701 PMCid:PMC3784079 7 https://doi.org/10.1155/2013/329121 Rainsford, K.D. (2007). Anti-inflammatory drugs in the 21st century. Subcell Biochem. 42, 3-27. PMid:17612044 8 https://doi.org/10.1007/1-4020-5688-5_1 Joshi, K.K., Nerurkar, RP. (2012). Anti-inflammatory effect of the serratiopeptidase--rationale or fashionable: a study in rat paw oedema model induced by the carrageenan. Indian J Physiol Pharmacol. 56(4): 367-374. 9 Chappi D., M, Suresh, K.V., Patil, M.R., Desai, R., Tauro, D.P., K.N.S. S.B., Parkar, M.I., Babaji, H.V. (2015). Comparison of clinical efficacy of methylprednisolone and serratiopeptidase for reduction of postoperative sequelae after lower third molar surgery. J Clin Exp Dent. 7(2): e197-e202. PMid:26155332 PMCid:PMC4483323 10 https://doi.org/10.4317/jced.51868 Jadav, S.P., Patel, N.H., Shah, T.G., Gajera, M.V., Trivedi, H.R., Shah, B.K. (2010). Comparison of antiinflammatory activity of serratiopeptidase and diclofenac in albino rats. J Pharmacol Pharmacother. 1(2): 116-117. PMid:21350623 PMCid:PMC3043339 11 https://doi.org/10.4103/0976-500X.72362 Mecikoglu, M., Saygi, B., Yildirim, Y., Karadag-Saygi, E., Ramadan, S.S., Esemenli, T. (2006). The effect of proteolytic enzyme serratiopeptidase in the treatment of experimental implant-related infection. J Bone Joint Surg Am. 88(6): 1208-1214. PMid:16757752 12 https://doi.org/10.2106/JBJS.E.00007 Buckley, C.D., Gilroy, D.W., Serhan, C.N., Stockinger, B., Tak, P.P. (2013). The resolution of inflammation. Nat Rev Immunol. 13(1): 59-66. PMid:23197111 13 https://doi.org/10.1038/nri3362 Hosseinzadeh, S.A., Valizadeh, V., Rouhani, M., Mirkazemi, S., Azizi, M., Norouzian, D. (2022). Novel serratiopeptidase exhibits different affinities to the substrates and inhibitors. Chem Biol Drug Des. 100(4): 553-563. PMid:35729860 14 https://doi.org/10.1111/cbdd.14105 Paul-Murphy, J.R., Brunson, D.B., Miletic, V. (1999). Analgesic effects of butorphanol and buprenorphine in conscious African grey parrots (Psittacus erithacus erithacus and Psittacus erithacus timneh). Am J Vet Res. 60(10): 1218-1221. PMid:10791933 15 https://doi.org/10.2460/ajvr.1999.60.10.1218 Evrard, H.C., Balthazart, J. (2002). The assessment of nociceptive and non-nociceptive skin sensitivity in the Japanese quail (Coturnix japonica). J Neurosci Methods. 116(2): 135-146. PMid:12044663 16 https://doi.org/10.1016/S0165-0270(02)00034-1 Naser, A., Albadrany, Y., Shaaban, KA. (2021). Methods of pain assessment in chicks as a model. Egypt J Vet Sci. 52(2): 241-249. 17 https://doi.org/10.21608/ejvs.2021.64605.1219 Naser, A.S., Albadrany, Y., Shaaban, K.A. (2020). Isobolographic analysis of analgesic interactions of silymarin with ketamine in mice. J Hell Vet Med Soc. 71(2): 2171-2178. 18 https://doi.org/10.12681/jhvms.23653 Alberifki, N.M., Naser, A.S. (2023). Flurbiprofen: determination of safety profile, analgesic effect, and interaction with lipoic acid in murine. Iraqi J Vet Sci. 37(2): 447-452. 19 https://doi.org/10.33899/ijvs.2023.136615.2599 Hughes, R.A., Sufka, K.J. (1991). Morphine hyperalgesic effects on the formalin test in domestic fowl (Gallus gallus). Pharmacol Biochem Behav. 38(2): 247-251. PMid:2057496 20 https://doi.org/10.1016/0091-3057(91)90273-5 Abdul-Ghani, M.R., Naser, A.S. (2022). Bakers’ yeast induced paw edema and fever in chicks for detection of anti-inflammatory effects of alphalipoic acid: a new approach. Egypt J Vet Sci. 53(2): 185-191. 21 https://doi.org/10.21608/ejvs.2022.107080.1314 Henry, D.A. (1988). Side-effects of non-steroidal anti-inflammatory drugs. Baillieres Clin Rheumatol. 2(2): 425-454. PMid:3066501 22 https://doi.org/10.1016/S0950-3579(88)80021-9 El-Ghany, W. (2023). A natural feed additive phytobiotic, pomegranate (Punica granatum L.), and the health status of poultry. Mac Vet Rev. 46(2): 113-128. 23 https://doi.org/10.2478/macvetrev-2023-0022 Yadav, V., Sharma, S., Kumar, A., Singh, S., Ravichandiran, V. (2023). Serratiopeptidase attenuates lipopolysaccharide-induced vascular inflammation by inhibiting the expression of monocyte chemoattractant protein-1. Curr Issues Mol Biol. 45(3): 2201-2212. PMid:36975512 PMCid:PMC10047379 24 https://doi.org/10.3390/cimb45030142 Mammdoh, J.K., Al-Alsadoon, L.H., Taqa, G.A., Taqa, A.A. (2022). Evaluation of anti-inflammatory effect of topical serratiopeptidase in mice. Inflammation. 12(1): 162-166. 25 Nirale, N.M., Menon, M.D. (2010). Topical formulations of serratiopeptidase: development and pharmacodynamic evaluation. Indian J Pharm Sci. 72(1): 65-71. PMid:20582192 PMCid:PMC2883229 26 https://doi.org/10.4103/0250-474X.62246 Moriya, N., Shoichi, A., Yoko, H., Fumio, H., Yoshiaki, K. (2003). Intestinal absorption of serrapeptase and its distribution to the inflammation sites. Japanese Pharmacol Ther. 31(8): 659-666. 27 Woodley, J.F. (1994). Enzymatic barriers for GI peptide and protein delivery. Crit Rev Ther Drug Carrier Syst. 11(2-3): 61-95. 28 Moriya, N., Nakata, M., Nakamura, M., Takaoka, M., Iwasa, S, Kato, K. (1994). Intestinal absorption of serrapeptase (TSP) in rats. Biotechnol Appl Biochem. 20(1): 101-108. PMid:7917060 29 https://doi.org/10.1111/j.1470-8744.1994.tb00308.x Parada, C.A., Tambeli, C.H., Cunha, F. de Q., Ferreira, S.H. (2001). The major role of peripheral release of histamine and 5-hydroxytryptamine in formalin-induced nociception. Neuroscience. 102(4): 937-944. PMid:11182255 30 https://doi.org/10.1016/S0306-4522(00)00523-6 Singh, B.M., Negi, G., Bhole, P., Jaiprakash, M. (2012). Pain and inflammation: a review. Int J Pharm Sci Res. 3(12): 4697-4709. 31 Nair, S.R. (2022). Serratiopeptidase: an integrated view of multifaceted therapeutic enzyme. Biomolecules 12(10): 1468. PMid:36291677 PMCid:PMC9599151 32 https://doi.org/10.3390/biom12101468 Jadhav, S.B., Shah, N., Rathi, A., Rathi, V., Rathi, A. (2020). Serratiopeptidase: insights into the therapeutic applications. Biotechnol Rep (Amst). 28: e00544. PMid:33134103 PMCid:PMC7585045 33 https://doi.org/10.1016/j.btre.2020.e00544 El-Radhi, A.S. (2018). Fever in common infectious diseases. Clin Man Fever Child. 85-140. PMCid:PMC7122655 34 https://doi.org/10.1007/978-3-319-92336-9_5 Ivanov, A.I., Romanovsky, A.A. (2004). Prostaglandin E2 as a mediator of fever: synthesis and catabolism. Front Biosci. 9, 1977-1993. PMid:14977603 35 https://doi.org/10.2741/1383 Bhagat, S., Agarwal, M., Roy, V. (2013). Serratiopeptidase: a systematic review of the existing evidence. Int J Surg. 11(3): 209-217. PMid:23380245 36 https://doi.org/10.1016/j.ijsu.2013.01.010 Vaday, G.G., Lider, O. (2000). Extracellular matrix moieties, cytokines, and enzymes: dynamic effects on immune cell behavior and inflammation. J Leukoc Biol. 67(2): 149-159. PMid:10670574 37 https://doi.org/10.1002/jlb.67.2.149 Birkedal‐Hansen, H. (1993). Role of cytokines and inflammatory mediators in tissue destruction. J Periodontal Res. 28(6 Pt 2): 500-510. PMid:8263720 38 https://doi.org/10.1111/j.1600-0765.1993.tb02113.x Tiwari, M. (2017). The role of serratiopeptidase in the resolution of inflammation. Asian J Pharm Sci. 12(3): 209-215. PMid:32104332 PMCid:PMC7032259 39 https://doi.org/10.1016/j.ajps.2017.01.003