Short Communication IDENTIFICATION AND ANTIMICROBIAL SUSCEPTIBILITY OF SEROVAR CHOLERAESUIS IN A SALMONELLA OUTBREAK IN CENTRAL-WESTERN ALBANIA Swine paratyphoid infection is caused by the swine-adapted Salmonella enterica serovar Choleraesuis. Infected individuals remain healthy carriers, and if the infection occurs at the end of the fattening period, it could pose a threat to human health. The present work aimed to assess antimicrobial susceptibility of S. enterica serovar Choleraesuis serotypes isolated from domestic pigs in central-western Albania, and to assess the presence and circulation of antibiotic-resistant paratyphoid Salmonella in Albania. Increasing mortality was reported in 6 farrow-to-finish pig farms located in the western and central parts of the country from December 2022 to April 2023. Post-mortem examination revealed macroscopic lesions in different organs indicating Salmonella infection. Four serovars Choleraesuis were isolated out of 24 different Salmonella spp. Multi-drug resistance (MDR), extensively drug-resistant (XDR), and Pan Drug Resistance (PDR) was calculated. Three out of four isolates showed MDR, and one out of four showed XDR. All S. enterica serovar Choleraesuis isolates showed resistance to at least two antimicrobials. Three isolates were observed to display MAR index values >0.2 indicating high-risk contaminated sources with frequent use of antibiotics. The predominant antimicrobial resistance was observed for amoxicillin, oxytetracycline, sulfamethoxazole, trimethoprim, spiramycin, colistin sulpha, and doxycycline. The findings emphasize the importance of strict biosecurity measures in affected pig farms, and prevention and control of S. enterica serovar Choleraesuis in the farm sanitary programs in Albania. https://macvetrev.mk/LoadArticlePdf/361 2024-10-15 191 197 https://doi.org/10.2478/macvetrev-2024-0023 paratyphoid Choleraesuis antimicrobial resistance pigs Salmonella Liljana Lufo caraliljana@yahoo.com false 1 Department of Preclinical Modules, Faculty of Veterinary Medicine, Agriculture University of Tirana, Rr. Pajsi Vodica, Koder Kamez, Tirana, Albania LEAD_AUTHOR Gjena Dura false 2 Veterinary Bio-Diagnostic Laboratory BIO-V Ltd, Tirana, Albania AUTHOR Andon Çuko false 3 Regional Veterinary Service, Fier, Albania AUTHOR Luigj Turmalaj false 4 Department of Preclinical Modules, Faculty of Veterinary Medicine, Agriculture University of Tirana, Rr. Pajsi Vodica, Koder Kamez, Tirana, Albania AUTHOR Al-Ansari, M.M., Aljubali, M.M., Somily, A.M., Albarrag, A.M., Masood, A. (2021). Isolation and molecular characterization of multidrug-resistant Salmonella enterica serovars. J Infect Public Health. 14(12): 1767-1776. PMid:34690097 1 https://doi.org/10.1016/j.jiph.2021.10.011 Griffith, R.W., Carlson, S.A., Krull, A.C. (2019). Salmonellosis, In J.J. Zimmerman, L.A. Karriker, A. Ramirez, K.J. Schwartz, G.W., Stevenson, J. Zhang (Eds.), Diseases of Swine, 11th ed. (pp. 912-925). John Wiley & Sons, Inc 2 https://doi.org/10.1002/9781119350927.ch59 Fedorka-Cray, P.J., Gray, J.T., Wray, C. (2000). Salmonella infections in pigs, In P.A. Barrow, U. Methner (Eds.), Salmonella in domestic animals (pp. 1191-1207). CAB International: Wallingford 3 https://doi.org/10.1079/9780851992617.0191 BfR (The Federal Institute for Risk Assessment). (2016). Salmonella, Listeria and Co.: Old and new challenges for food safety,” 4th Symp. Zoonoses and Food Safety. BfR on findings and strategies to minimize foodborne diseases. 4 Li, H., Wu, Y., Feng, D., Jiang, Q., Li, S., Rong, J., et al. (2024). Centralized industrialization of pork in Europe and America contributes to the global spread of Salmonella enteric. Nat Nature Food 5, 413-422. PMid:38724686 PMCid:PMC11132987 5 https://doi.org/10.1038/s43016-024-00968-1 Kotorri, S., Boci, J., Muhedini, P. (2016). New outbreaks of salmonellosis in pig farms”. Albanian J Agric Sci. 14(2): 192-197. 6 INSTAT. (2021). Statistikat e Blegtorisë, Ministria e Bujqësisë dhe Zhvillimit Rural. c2021 [cited December 20] 7 https:// www.instat.gov.al Brown, C.C., Baker, D.C., Barker, I.K. (2007). Alimentary system, In M.G. Maxie (Ed.), Jubb, Kennedy and Palmer’s Pathology of Domestic Animals, Vol 2, 5th ed. (pp. 193-199). Toronto: Saunders Elsevier 8 Arruda, B.L., Burrough, E.R., Schwartz, K.J. (2019). Salmonella enterica I 4, [5], 12:i:- associated Emerg Infect Dis. 2(7): 1377-1379. PMid:31211677 PMCid:PMC6590737 9 https://doi.org/10.3201/eid2507.181453 Li, Y., Teng, L., Xu, X., Li, X., Peng, X., Zhou, X., Du, J., et al. (2022). A nontyphoidal Salmonella serovar domestication accompanying enhanced niche adaptation. EMBO Mol Med. 14(11): e16366. PMid:36172999 PMCid:PMC9641423 10 https://doi.org/10.15252/emmm.202216366 Teng, K.Ty., Aerts, M., Jaspers, S. et al. (2022). Patterns of antimicrobial resistance in Salmonella isolates from fattening pigs in Spain. BMC Vet Res. 18, 333. PMid:36057710 PMCid:PMC9440507 11 https://doi.org/10.1186/s12917-022-03377-3 Ma, F., Xu, S., Tang, Z., Li, Z., Zhang, L. (2021). Use of antimicrobials in food animals and impact of transmission of antimicrobial resistance on humans. Biosaf Health 3(1): 32-38. 12 https://doi.org/10.1016/j.bsheal.2020.09.004 Davis, R., Brown, P.D. (2016). Multiple antibiotic resistance index, fitness and virulence potential in respiratory Pseudomonas aeruginosa from Jamaica. J Med Microbiol. 65(4): 261-271. PMid:26860081 13 https://doi.org/10.1099/jmm.0.000229 Nair, D.V.T., Venkitanarayanan, K., Johny, A.K. (2018). Antibiotic-resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods 7(10): 167. PMid:30314348 PMCid:PMC6210005 14 https://doi.org/10.3390/foods7100167 Collignon, P., Athukorala, P-C., Senanayake, S., Khan, F. (2015). Antimicrobial resistance: the major contribution of poor governance and corruption to this growing problem. PLoS ONE 10(3): e0116746. PMid:25786027 PMCid:PMC4364737 15 https://doi.org/10.1371/journal.pone.0116746 Mthembu, T.P., Zishiri, O.T., El Zowalaty M.E. (2019). Molecular detection of multidrug-resistant Salmonella isolated from livestock production systems in South Africa. Infect Drug Resist. 14(12): 3537-3548. PMid:31814742 PMCid:PMC6861519 16 https://doi.org/10.2147/IDR.S211618 Soliani, L., Rugna, G., Prosperi, A., Chiapponi, C., Luppi, A. (2023). Salmonella infection in pigs: disease, prevalence, and a link between swine and human health. Pathogens 12(10): 1267. PMid:37887782 PMCid:PMC10610219 17 https://doi.org/10.3390/pathogens12101267 Magiorakos, A-P., Srinivasan, A., Carey, R.B., Carmeli, Y., Falagas, M.E., Giske, C.G., Harbarth, S., et al. (2012). Multidrug-resistant, extensively drug-resistant and pan drug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect. 18(3): 268-281. PMid:21793988 18 https://doi.org/10.1111/j.1469-0691.2011.03570.x Thenmozhi, S., Rajeswari, P., Suresh Kumar, B.T., Saipriyanga, V., Kalpana, M. (2014). Multi-drug resistant patterns of biofilm forming Aeromonas hydrophila from urine samples. Int J Pharm Sci Res. 5(7): 2908-2918. 19 Zhou, Z., Alikhan, N.F., Mohamed, K., Fan, Y., Agama Study Group, Achtman, M. (2020). The EnteroBase user’s guide, with case studies on Salmonella transmissions, Yersinia pestis phylogeny, and Escherichia core genomic diversity. Genome Res. 30(1): 138-152. PMid:31809257 PMCid:PMC6961584 20 https://doi.org/10.1101/gr.251678.119 Tang, B., Elbediwi, M., Nambiar, R.B., Yang, H., Lin, J., Yue, M. (2022). Genomic characterization of antimicrobial-resistant Salmonella enterica in duck, chicken, and pig farms and retail markets in Eastern China. Microbiol Spectr. 10(5): e0125722. PMid:36047803 PMCid:PMC9603869 21 https://doi.org/10.1128/spectrum.01257-22 Liu, Q., Chen, W., Elbediwi, M., Pan, H., Wang, L., Zhou, C., Zhao, B., et al. (2020). Characterization of Salmonella resistome and plasmidome in pork production system in Jiangsu, China. Front Vet Sci. 7, 572392. PMid:33062654 PMCid:PMC7517575 22 https://doi.org/10.3389/fvets.2020.00617 Dominguez, J.E., Redondo, L.M., Figueroa, E.R., Cejas, D., Gutkind, G.O., Chacana, P.A., Di Conza, J.A., Fernandez, M.M. (2018). Simultaneous carriage of mcr-1 and other antimicrobial resistance determinants in Escherichia coli from poultry. Front Microbiol. 9, 1679. PMid:30090095 PMCid:PMC6068390 23 https://doi.org/10.3389/fmicb.2018.01679 McDermott, P.F., Tyson, G.H., Kabera, C., Chen, Y., Li, C., Folster, J.P., et al. (2016). Whole-genome sequencing for detecting antimicrobial resistance in nontyphoidal Salmonella. Antimicrob Agents Chemother. 60(9): 5515-5520. PMid:27381390 PMCid:PMC4997858 24 https://doi.org/10.1128/AAC.01030-16