Original Scientific Article
1H-NMR ANALYSIS OF AMINO ACID METABOLISM IN CEREBROSPINAL FLUID OF DOGS WITH NEUROLOGICAL DISTEMPER
Canine Distemper Virus (CDV) infection causes a multifocal demyelinating progressive disease within the central nervous system (CNS) that results in wide range of neurological symptoms. Pathological changes in the brain or CNS could be observed by analyzing cerebrospinal fluid (CSF). Therefore, this study aimed to investigate the concentrations of amino acids in the CSF of dogs with neurological form of CDV infection, and to identify amino acids as markers that can be used in the diagnosis, pathogenesis, and treatment of the disease. Heathy dogs (n=6), confirmed by clinical and laboratory examinations (Healthy group), and CDV-infected dogs (n=10) with neurological symptoms, confirmed by clinical, laboratory, and rapid diagnostic test kits (Distemper group), were used. CSF samples were obtained with an appropriate method and were subjected to 1H-NMR analysis. Identification was made on 10, whereas quantification on 8 amino acids. L-tyrosine, L-phenylalanine, L-threonine, and L-alanine concentrations were significantly lower, while L-histidine and L-tryptophan were significantly higher than the Healthy group <. It was concluded that L-tyrosine could be used for assessing mental status changes, L-phenylalanine for evaluating neuroprotective responses, L-threonine and L-histidine for gauging the extent of neurodegeneration and ventricular degeneration, L-alanine for exploring cellular stress and energy metabolism, and L-tryptophan for understanding the process of sympathetic nervous system activation.
https://macvetrev.mk/LoadArticlePdf/361
2024-10-15
131
140
https://doi.org/10.2478/macvetrev-2024-0024
biomarker
dogs
NMR
CSF
amino acid
Erdem
Gülersoy
egulersoy@harran.edu.tr
false
1
Department of Internal Medicine, Veterinary Faculty, Harran University, Eyyubiye, 63200 Şanliurfa, Türkiye
LEAD_AUTHOR
Canberk
Balikçi
false
2
Department of Internal Medicine, Veterinary Faculty, Harran University, Eyyubiye, 63200 Şanliurfa, Türkiye
AUTHOR
Ismail
Günal
false
3
Department of Internal Medicine, Veterinary Faculty, Harran University, Eyyubiye, 63200 Şanliurfa, Türkiye
AUTHOR
Adem
Şahan
false
4
Department of Internal Medicine, Veterinary Faculty, Harran University, Eyyubiye, 63200 Şanliurfa, Türkiye
AUTHOR
Esma
Kismet
false
5
Department of Internal Medicine, Veterinary Faculty, Harran University, Eyyubiye, 63200 Şanliurfa, Türkiye
AUTHOR
Fatma
Akdağ
false
6
Department of Internal Medicine, Veterinary Faculty, Harran University, Eyyubiye, 63200 Şanliurfa, Türkiye
AUTHOR
Mahmut
Ok
false
7
Department of Internal Medicine, Veterinary Faculty, Selçuk University, Konya, Türkiye
AUTHOR
Lempp, C., Spitzbarth, I., Puff, C., Cana, A., Kegler, K., Techangamsuwan, S., Seehusen, F. (2014). New aspects of the pathogenesis of canine distemper leukoencephalitis. Viruses 6(7): 2571-2601. PMid:24992230 PMCid:PMC4113784
1
https://doi.org/10.3390/v6072571
Pratakpiriya, W., Seki, F., Otsuki, N., Sakai, K., Fukuhara, H., Katamoto, H., Lan, N. T. (2012). Nectin4 is an epithelial cell receptor for canine distemper virus and involved in the neurovirulence. J Virol. 86(18): 10207-10210. PMid:22761370 PMCid:PMC3446623
2
https://doi.org/10.1128/JVI.00824-12
Ludlow, M., Nguyen, D.T., Silin, D., Lyubomska, O., de Vries, R.D., von Messling, V., Duprex, W.P. (2012). Recombinant canine distemper virus strain Snyder Hill expressing green or red fluorescent proteins causes meningoencephalitis in the ferret. J Virol. 86(14): 7508-7519. PMid:22553334 PMCid:PMC3416283
3
https://doi.org/10.1128/JVI.06725-11
Amude, A.M., Alfieri, A.A., Alfieri, A.F. (2007). Clinicopathological findings in dogs with distemper encephalomyelitis presented without characteristic signs of the disease. Res Vet Sci. 82(3): 416-422. PMid:17084426
4
https://doi.org/10.1016/j.rvsc.2006.08.008
Ulrich, R., Puff, C., Wewetzer, K., Kalkuhl, A., Deschl, U., Baumgartner, W. (2014). Transcriptional changes in canine distemper virus-induced demyelinating leukoencephalitis favor a biphasic mode of demyelination. PLoS One 9(4): e95917. PMid:24755553 PMCid:PMC3995819
5
https://doi.org/10.1371/journal.pone.0095917
Smolinska, A., Blanchet, L., Buydens, L.M.C. Wijmenga, S.S. (2012). NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review. Anal Chim Acta. 750, 82-97. PMid:23062430
6
https://doi.org/10.1016/j.aca.2012.05.049
Bechter, K. (2011). The peripheral cerebrospinal fluid outflow pathway physiology and pathophysiology of CSF recirculation: a review and hypothesis. Neurol Psychiatry Brain Res. 17(3): 51-66.
7
https://doi.org/10.1016/j.npbr.2011.06.003
Brunner, J.M., Plattet, P., Majcherczyk, P., Zurbriggen, A., Wittek, R., Hirling, H. (2007). Canine distemper virus infection of primary hippocampal cells induces an increase in extracellular glutamate and neurodegeneration. J Neurochem. 103(3): 1184-1195. PMid:17680994
8
https://doi.org/10.1111/j.1471-4159.2007.04819.x
Cheng, J.Y., Deng, Y.T., Yu, J.T. (2023). The causal role of circulating amino acids in neurodegenerative disorders: a two-sample Mendelian randomization study. J Neurochem. 166(6): 972-981. PMid:37565992
9
https://doi.org/10.1111/jnc.15937
Liu, J., Li, S., Liu, J., Liang, B., Wang, X., Wang, H. (2020). Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 55, 102763. PMid:32361250 PMCid:PMC7165294
10
https://doi.org/10.1016/j.ebiom.2020.102763
Tipold, A. (2008). Cerebrospinal fluid. In: K.G. Braund (Ed.), Clinical neurology in Small Animals: Localization, Diagnosis and Treatment. New York, USA
11
Musteata, M., Nicolescu, A., Solcan, G., Deleanu, C. (2013). The 1H NMR profile of healthy dog cerebrospinal fluid. PLoS One 8(12): e81192. PMid:24376499 PMCid:PMC3871169
12
https://doi.org/10.1371/journal.pone.0081192
Ravanbakhsh, S., Liu, P., Bjorndahl, T.C., Mandal, R., Grant, J.R., Wilson, M. (2015). Accurate, fully-automated NMR spectral profiling for metabolomics. PloS One 10(5): e0124219. PMid:26017271 PMCid:PMC4446368
13
https://doi.org/10.1371/journal.pone.0124219
Galán, A., Gamito, A., Carletti, B.E., Guisado, A., de las Mulas, J.M., Pérez, J., Martín, E.M. (2014). Uncommon acute neurologic presentation of canine distemper in 4 adult dogs. Can Vet J. 55(4): 373-378.
14
Fairley, R.A., Knesl, O., Pesavento, P.A., Elias, B.C. (2015). Post-vaccinal distemper encephalitis in two Border Collie cross littermates. N Z Vet J. 63(2): 117-120. PMid:25120026
15
https://doi.org/10.1080/00480169.2014.955068
Noyce, R.S., Delpeut, S., Richardson, C.D. (2013). Dog nectin-4 is an epithelial cell receptor for canine distemper virus that facilitates virus entry and syncytia formation. Virology 436(1): 210-220. PMid:23260107
16
https://doi.org/10.1016/j.virol.2012.11.011
Vandevelde, M., Zurbriggen, A. (2005). Demyelination in canine distemper virus infection: a review. Acta Neuropathol. 109(1): 56-68. PMid:15645260
17
https://doi.org/10.1007/s00401-004-0958-4
Califf, R.M. (2018). Biomarker definitions and their applications. Exp Biol Med (Maywood). 243(3): 213-221. PMid:29405771 PMCid:PMC5813875
18
https://doi.org/10.1177/1535370217750088
Nicholson, J.K. (2006). Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol. 2, 52. PMid:17016518 PMCid:PMC1682018
19
https://doi.org/10.1038/msb4100095
Lawrence, Y.A., Bishop, M.A., Honneffer, J.B., Cook, A.K., Rodrigues-Hoffmann, A., Steiner, J.M., metabolomic profiling of serum from dogs with chronic hepatic disease. J Vet Intern Med. 33(3): 1344-1352. PMid:30891842 PMCid:PMC6524095
20
https://doi.org/10.1111/jvim.15479
Constantinescu, R., Mondello, S. (2013). Cerebrospinal fluid biomarker candidates for Parkinsonian disorders. Front Neurol. 3, 187. PMid:23346074 PMCid:PMC3549487
21
https://doi.org/10.3389/fneur.2012.00187
Wishart, D.S., Lewis, M.J., Morrissey, J.A., Flegel, M.D., Jeroncic, K., Xiong, Y., Cheng, D., et al. (2008). The human cerebrospinal fluid metabolome. J Chromatogr B Analyt Technol Biomed Life Sci. 871(2): 164-173. PMid:18502700
22
https://doi.org/10.1016/j.jchromb.2008.05.001
Crews, B., Wikoff, W.R., Patti, G.J., Woo, H.K., Kalisiak, E. (2009). Variability analysis of human plasma and cerebral spinal fluid reveals statistical significance of changes in mass spectrometry-based metabolomics data. Anal Chem. 81(20): 8538-8544. PMid:19764780 PMCid:PMC3058611
23
https://doi.org/10.1021/ac9014947
Jongkees, B.J., Hommel, B., Kühn, S., Colzato, L.S. (2015). Effect of tyrosine supplementation on clinical and healthy populations under stress or cognitive demands--a review. J Psychiatr Res. 70, 50-57. PMid:26424423
24
https://doi.org/10.1016/j.jpsychires.2015.08.014
Dewey, C.W.A. (2008). Practical guide to canine and feline neurology. 2nd ed. Ames, Iowa, USA: Wiley-Blackwell
25
Glushakov, A.V., Dennis, D.M., Sumners, C., Seubert, C.N., Martynyuk, A.E. (2003). L-phenylalanine selectively depresses currents at glutamatergic excitatory synapses. J Neurosci Res. 72(1): 116-124. PMid:12645085
26
https://doi.org/10.1002/jnr.10569
Kagiyama, T., Glushakov, A.V., Sumners, C., Roose, B., Dennis, D.M., Phillips, M.I., Ozcan, M.S., et al. (2004). Neuroprotective action of halogenated derivatives of L-phenylalanine. Stroke 35(5): 1192-1196. PMid:15073406
27
https://doi.org/10.1161/01.STR.0000125722.10606.07
López-Corcuera, B., Benito-Muñoz, C., Aragón, C. (2017). Glycine transporters in glia cells: structural studies. Adv Neurobiol. 16, 13-32. PMid:28828604
28
https://doi.org/10.1007/978-3-319-55769-4_2
Kaiser, E., Schoenknecht, P., Thomann, P.A., Hunt, A., Schroeder, J. (2007). Influence of delayed CSF storage on concentrations of phosphotau protein (181), total tau protein and beta-amyloid (1-42). Neurosci Lett. 417(2): 193-195. PMid:17408854
29
https://doi.org/10.1016/j.neulet.2007.02.045
Morimoto, S., Hatsuta, H., Kokubo, Y., Nakano, Y., Hasegawa, M., Yoneda, M., Hirokawa, Y., et al. (2018). Unusual tau pathology of the cerebellum in patients with amyotrophic lateral sclerosis/ parkinsonism-dementia complex from the Kii Peninsula, Japan. Brain Pathol. 28(2): 287-291. PMid:28236345 PMCid:PMC8028275
30
https://doi.org/10.1111/bpa.12500
Volkenhoff, A., Weiler, A., Letzel, M., Stehling, M., Klämbt, C., Schirmeier, S. (2015). Glial glycolysis is essential for neuronal survival in Drosophila. Cell Metab. 22(3): 437-447. PMid:26235423
31
https://doi.org/10.1016/j.cmet.2015.07.006
Castro, T.X., Cubel Garcia, R.D.E., Gonçalves, L.P., Costa, E.M., Marcello, G.C., Labarthe, N.V., Mendes de Almeida, F. (2013). Clinical, hematological, and biochemical findings in puppies with coronavirus and parvovirus enteritis. Can Vet J. 54(9): 885-888.
32
Bhowmik, M., Khanam, R., Vohora, D. (2012). Histamine H3 receptor antagonists in relation to epilepsy and neurodegeneration: A systemic consideration of recent progress and perspectives. Br J Pharmacol. 167(7): 1398-1414. PMid:22758607 PMCid:PMC3514756
33
https://doi.org/10.1111/j.1476-5381.2012.02093.x
Chen, Z., Li, W.D., Zhu, L.J., Shen, Y.J., Wei, E.Q. (2002). Effects of histidine, a precursor of histamine, on pentylenetetrazole-induced seizures in rats. Acta Pharmacol Sin. 23(4): 361-366.
34
Dunn, A.J., Welch, J. (1991). Stress- and endotoxininduced increases in brain tryptophan and serotonin metabolism depend on sympathetic nervous system activity. J Neurochem. 57(5): 1615-1622. PMid:1717650
35
https://doi.org/10.1111/j.1471-4159.1991.tb06359.x
Spengler, R.N., Allen, R.M., Remick, D.G., Strieter, R.M., Kunkel, S.L. (1990). Stimulation of alpha-adrenergic receptor augments the production of macrophage-derived tumor necrosis factor. J Immunol. 145(5): 1430-1434. PMid:2166759
36
https://doi.org/10.4049/jimmunol.145.5.1430