Original Scientific Article 1H-NMR ANALYSIS OF AMINO ACID METABOLISM IN CEREBROSPINAL FLUID OF DOGS WITH NEUROLOGICAL DISTEMPER Canine Distemper Virus (CDV) infection causes a multifocal demyelinating progressive disease within the central nervous system (CNS) that results in wide range of neurological symptoms. Pathological changes in the brain or CNS could be observed by analyzing cerebrospinal fluid (CSF). Therefore, this study aimed to investigate the concentrations of amino acids in the CSF of dogs with neurological form of CDV infection, and to identify amino acids as markers that can be used in the diagnosis, pathogenesis, and treatment of the disease. Heathy dogs (n=6), confirmed by clinical and laboratory examinations (Healthy group), and CDV-infected dogs (n=10) with neurological symptoms, confirmed by clinical, laboratory, and rapid diagnostic test kits (Distemper group), were used. CSF samples were obtained with an appropriate method and were subjected to 1H-NMR analysis. Identification was made on 10, whereas quantification on 8 amino acids. L-tyrosine, L-phenylalanine, L-threonine, and L-alanine concentrations were significantly lower, while L-histidine and L-tryptophan were significantly higher than the Healthy group <. It was concluded that L-tyrosine could be used for assessing mental status changes, L-phenylalanine for evaluating neuroprotective responses, L-threonine and L-histidine for gauging the extent of neurodegeneration and ventricular degeneration, L-alanine for exploring cellular stress and energy metabolism, and L-tryptophan for understanding the process of sympathetic nervous system activation. https://macvetrev.mk/LoadArticlePdf/361 2024-10-15 131 140 https://doi.org/10.2478/macvetrev-2024-0024 biomarker dogs NMR CSF amino acid Erdem Gülersoy egulersoy@harran.edu.tr false 1 Department of Internal Medicine, Veterinary Faculty, Harran University, Eyyubiye, 63200 Şanliurfa, Türkiye LEAD_AUTHOR Canberk Balikçi false 2 Department of Internal Medicine, Veterinary Faculty, Harran University, Eyyubiye, 63200 Şanliurfa, Türkiye AUTHOR Ismail Günal false 3 Department of Internal Medicine, Veterinary Faculty, Harran University, Eyyubiye, 63200 Şanliurfa, Türkiye AUTHOR Adem Şahan false 4 Department of Internal Medicine, Veterinary Faculty, Harran University, Eyyubiye, 63200 Şanliurfa, Türkiye AUTHOR Esma Kismet false 5 Department of Internal Medicine, Veterinary Faculty, Harran University, Eyyubiye, 63200 Şanliurfa, Türkiye AUTHOR Fatma Akdağ false 6 Department of Internal Medicine, Veterinary Faculty, Harran University, Eyyubiye, 63200 Şanliurfa, Türkiye AUTHOR Mahmut Ok false 7 Department of Internal Medicine, Veterinary Faculty, Selçuk University, Konya, Türkiye AUTHOR Lempp, C., Spitzbarth, I., Puff, C., Cana, A., Kegler, K., Techangamsuwan, S., Seehusen, F. (2014). New aspects of the pathogenesis of canine distemper leukoencephalitis. Viruses 6(7): 2571-2601. PMid:24992230 PMCid:PMC4113784 1 https://doi.org/10.3390/v6072571 Pratakpiriya, W., Seki, F., Otsuki, N., Sakai, K., Fukuhara, H., Katamoto, H., Lan, N. T. (2012). Nectin4 is an epithelial cell receptor for canine distemper virus and involved in the neurovirulence. J Virol. 86(18): 10207-10210. PMid:22761370 PMCid:PMC3446623 2 https://doi.org/10.1128/JVI.00824-12 Ludlow, M., Nguyen, D.T., Silin, D., Lyubomska, O., de Vries, R.D., von Messling, V., Duprex, W.P. (2012). Recombinant canine distemper virus strain Snyder Hill expressing green or red fluorescent proteins causes meningoencephalitis in the ferret. J Virol. 86(14): 7508-7519. PMid:22553334 PMCid:PMC3416283 3 https://doi.org/10.1128/JVI.06725-11 Amude, A.M., Alfieri, A.A., Alfieri, A.F. (2007). Clinicopathological findings in dogs with distemper encephalomyelitis presented without characteristic signs of the disease. Res Vet Sci. 82(3): 416-422. PMid:17084426 4 https://doi.org/10.1016/j.rvsc.2006.08.008 Ulrich, R., Puff, C., Wewetzer, K., Kalkuhl, A., Deschl, U., Baumgartner, W. (2014). Transcriptional changes in canine distemper virus-induced demyelinating leukoencephalitis favor a biphasic mode of demyelination. PLoS One 9(4): e95917. PMid:24755553 PMCid:PMC3995819 5 https://doi.org/10.1371/journal.pone.0095917 Smolinska, A., Blanchet, L., Buydens, L.M.C. Wijmenga, S.S. (2012). NMR and pattern recognition methods in metabolomics: From data acquisition to biomarker discovery: A review. Anal Chim Acta. 750, 82-97. PMid:23062430 6 https://doi.org/10.1016/j.aca.2012.05.049 Bechter, K. (2011). The peripheral cerebrospinal fluid outflow pathway physiology and pathophysiology of CSF recirculation: a review and hypothesis. Neurol Psychiatry Brain Res. 17(3): 51-66. 7 https://doi.org/10.1016/j.npbr.2011.06.003 Brunner, J.M., Plattet, P., Majcherczyk, P., Zurbriggen, A., Wittek, R., Hirling, H. (2007). Canine distemper virus infection of primary hippocampal cells induces an increase in extracellular glutamate and neurodegeneration. J Neurochem. 103(3): 1184-1195. PMid:17680994 8 https://doi.org/10.1111/j.1471-4159.2007.04819.x Cheng, J.Y., Deng, Y.T., Yu, J.T. (2023). The causal role of circulating amino acids in neurodegenerative disorders: a two-sample Mendelian randomization study. J Neurochem. 166(6): 972-981. PMid:37565992 9 https://doi.org/10.1111/jnc.15937 Liu, J., Li, S., Liu, J., Liang, B., Wang, X., Wang, H. (2020). Longitudinal characteristics of lymphocyte responses and cytokine profiles in the peripheral blood of SARS-CoV-2 infected patients. EBioMedicine 55, 102763. PMid:32361250 PMCid:PMC7165294 10 https://doi.org/10.1016/j.ebiom.2020.102763 Tipold, A. (2008). Cerebrospinal fluid. In: K.G. Braund (Ed.), Clinical neurology in Small Animals: Localization, Diagnosis and Treatment. New York, USA 11 Musteata, M., Nicolescu, A., Solcan, G., Deleanu, C. (2013). The 1H NMR profile of healthy dog cerebrospinal fluid. PLoS One 8(12): e81192. PMid:24376499 PMCid:PMC3871169 12 https://doi.org/10.1371/journal.pone.0081192 Ravanbakhsh, S., Liu, P., Bjorndahl, T.C., Mandal, R., Grant, J.R., Wilson, M. (2015). Accurate, fully-automated NMR spectral profiling for metabolomics. PloS One 10(5): e0124219. PMid:26017271 PMCid:PMC4446368 13 https://doi.org/10.1371/journal.pone.0124219 Galán, A., Gamito, A., Carletti, B.E., Guisado, A., de las Mulas, J.M., Pérez, J., Martín, E.M. (2014). Uncommon acute neurologic presentation of canine distemper in 4 adult dogs. Can Vet J. 55(4): 373-378. 14 Fairley, R.A., Knesl, O., Pesavento, P.A., Elias, B.C. (2015). Post-vaccinal distemper encephalitis in two Border Collie cross littermates. N Z Vet J. 63(2): 117-120. PMid:25120026 15 https://doi.org/10.1080/00480169.2014.955068 Noyce, R.S., Delpeut, S., Richardson, C.D. (2013). Dog nectin-4 is an epithelial cell receptor for canine distemper virus that facilitates virus entry and syncytia formation. Virology 436(1): 210-220. PMid:23260107 16 https://doi.org/10.1016/j.virol.2012.11.011 Vandevelde, M., Zurbriggen, A. (2005). Demyelination in canine distemper virus infection: a review. Acta Neuropathol. 109(1): 56-68. PMid:15645260 17 https://doi.org/10.1007/s00401-004-0958-4 Califf, R.M. (2018). Biomarker definitions and their applications. Exp Biol Med (Maywood). 243(3): 213-221. PMid:29405771 PMCid:PMC5813875 18 https://doi.org/10.1177/1535370217750088 Nicholson, J.K. (2006). Global systems biology, personalized medicine and molecular epidemiology. Mol Syst Biol. 2, 52. PMid:17016518 PMCid:PMC1682018 19 https://doi.org/10.1038/msb4100095 Lawrence, Y.A., Bishop, M.A., Honneffer, J.B., Cook, A.K., Rodrigues-Hoffmann, A., Steiner, J.M., metabolomic profiling of serum from dogs with chronic hepatic disease. J Vet Intern Med. 33(3): 1344-1352. PMid:30891842 PMCid:PMC6524095 20 https://doi.org/10.1111/jvim.15479 Constantinescu, R., Mondello, S. (2013). Cerebrospinal fluid biomarker candidates for Parkinsonian disorders. Front Neurol. 3, 187. PMid:23346074 PMCid:PMC3549487 21 https://doi.org/10.3389/fneur.2012.00187 Wishart, D.S., Lewis, M.J., Morrissey, J.A., Flegel, M.D., Jeroncic, K., Xiong, Y., Cheng, D., et al. (2008). The human cerebrospinal fluid metabolome. J Chromatogr B Analyt Technol Biomed Life Sci. 871(2): 164-173. PMid:18502700 22 https://doi.org/10.1016/j.jchromb.2008.05.001 Crews, B., Wikoff, W.R., Patti, G.J., Woo, H.K., Kalisiak, E. (2009). Variability analysis of human plasma and cerebral spinal fluid reveals statistical significance of changes in mass spectrometry-based metabolomics data. Anal Chem. 81(20): 8538-8544. PMid:19764780 PMCid:PMC3058611 23 https://doi.org/10.1021/ac9014947 Jongkees, B.J., Hommel, B., Kühn, S., Colzato, L.S. (2015). Effect of tyrosine supplementation on clinical and healthy populations under stress or cognitive demands--a review. J Psychiatr Res. 70, 50-57. PMid:26424423 24 https://doi.org/10.1016/j.jpsychires.2015.08.014 Dewey, C.W.A. (2008). Practical guide to canine and feline neurology. 2nd ed. Ames, Iowa, USA: Wiley-Blackwell 25 Glushakov, A.V., Dennis, D.M., Sumners, C., Seubert, C.N., Martynyuk, A.E. (2003). L-phenylalanine selectively depresses currents at glutamatergic excitatory synapses. J Neurosci Res. 72(1): 116-124. PMid:12645085 26 https://doi.org/10.1002/jnr.10569 Kagiyama, T., Glushakov, A.V., Sumners, C., Roose, B., Dennis, D.M., Phillips, M.I., Ozcan, M.S., et al. (2004). Neuroprotective action of halogenated derivatives of L-phenylalanine. Stroke 35(5): 1192-1196. PMid:15073406 27 https://doi.org/10.1161/01.STR.0000125722.10606.07 López-Corcuera, B., Benito-Muñoz, C., Aragón, C. (2017). Glycine transporters in glia cells: structural studies. Adv Neurobiol. 16, 13-32. PMid:28828604 28 https://doi.org/10.1007/978-3-319-55769-4_2 Kaiser, E., Schoenknecht, P., Thomann, P.A., Hunt, A., Schroeder, J. (2007). Influence of delayed CSF storage on concentrations of phosphotau protein (181), total tau protein and beta-amyloid (1-42). Neurosci Lett. 417(2): 193-195. PMid:17408854 29 https://doi.org/10.1016/j.neulet.2007.02.045 Morimoto, S., Hatsuta, H., Kokubo, Y., Nakano, Y., Hasegawa, M., Yoneda, M., Hirokawa, Y., et al. (2018). Unusual tau pathology of the cerebellum in patients with amyotrophic lateral sclerosis/ parkinsonism-dementia complex from the Kii Peninsula, Japan. Brain Pathol. 28(2): 287-291. PMid:28236345 PMCid:PMC8028275 30 https://doi.org/10.1111/bpa.12500 Volkenhoff, A., Weiler, A., Letzel, M., Stehling, M., Klämbt, C., Schirmeier, S. (2015). Glial glycolysis is essential for neuronal survival in Drosophila. Cell Metab. 22(3): 437-447. PMid:26235423 31 https://doi.org/10.1016/j.cmet.2015.07.006 Castro, T.X., Cubel Garcia, R.D.E., Gonçalves, L.P., Costa, E.M., Marcello, G.C., Labarthe, N.V., Mendes de Almeida, F. (2013). Clinical, hematological, and biochemical findings in puppies with coronavirus and parvovirus enteritis. Can Vet J. 54(9): 885-888. 32 Bhowmik, M., Khanam, R., Vohora, D. (2012). Histamine H3 receptor antagonists in relation to epilepsy and neurodegeneration: A systemic consideration of recent progress and perspectives. Br J Pharmacol. 167(7): 1398-1414. PMid:22758607 PMCid:PMC3514756 33 https://doi.org/10.1111/j.1476-5381.2012.02093.x Chen, Z., Li, W.D., Zhu, L.J., Shen, Y.J., Wei, E.Q. (2002). Effects of histidine, a precursor of histamine, on pentylenetetrazole-induced seizures in rats. Acta Pharmacol Sin. 23(4): 361-366. 34 Dunn, A.J., Welch, J. (1991). Stress- and endotoxininduced increases in brain tryptophan and serotonin metabolism depend on sympathetic nervous system activity. J Neurochem. 57(5): 1615-1622. PMid:1717650 35 https://doi.org/10.1111/j.1471-4159.1991.tb06359.x Spengler, R.N., Allen, R.M., Remick, D.G., Strieter, R.M., Kunkel, S.L. (1990). Stimulation of alpha-adrenergic receptor augments the production of macrophage-derived tumor necrosis factor. J Immunol. 145(5): 1430-1434. PMid:2166759 36 https://doi.org/10.4049/jimmunol.145.5.1430