Original Scientific Article
RABIES VIRUS NUCLEOPROTEIN: LARGE-SCALE EXPRESSION IN PROKARYOTIC SYSTEM
Rabies is controlled by mass animal vaccination campaigns. Cats, dogs, and wild animals (e.g., bats) are large reservoirs of this virus and can pose a significant threat to the human health, especially in the developing countries. The nucleoprotein of the rabies virus is of great scientific interest since it has the potential to generate immunity in animals and can be used as for immunochemical diagnostics. The study aimed to test a large-scale expression of the rabies N protein in a prokaryotic system. The recombinant N protein was successfully expressed and purified. It was immunologically recognized by specific antibodies and was able to induce the production of specific antibodies in a mouse immunization assay. These encouraging results indicate that the recombinant N protein can be evaluated as an antigen for the development of a subunit vaccine or for a diagnostic assay.
https://macvetrev.mk/LoadArticlePdf/361
2024-10-15
151
158
https://doi.org/10.2478/macvetrev-2024-0026
rabies virus
nucleoprotein
Escherichia coli
large-scale expression
Leandro
Daniel
Picotto
false
1
1Reproductive Biotechnology, National Agricultural Technology Institute, (INTA), Ruta 226 km 73.5, 7620, Balcarce, Argentina
AUTHOR
Carlos
Javier
Panei
javierpanei@fcv.unlp.edu.ar
false
2
Virology Laboratory, Faculty of Veterinary Sciences, National University of La Plata, 60& 118, CC 296, 1900, La Plata, Argentina; National Scientific and Technical Research Council (CONICET), Argentina
LEAD_AUTHOR
Marcelo
Ricardo
Pecoraro
false
3
Virology Laboratory, Faculty of Veterinary Sciences, National University of La Plata, 60& 118, CC 296, 1900, La Plata, Argentina
AUTHOR
Guillermo
Hernán
Sguazza
false
4
Virology Laboratory, Faculty of Veterinary Sciences, National University of La Plata, 60& 118, CC 296, 1900, La Plata, Argentina
AUTHOR
Martinez, L. (2000). Global infectious disease surveillance. Int J Infect Dis. 4(4): 222-228. PMid:11231187
1
https://doi.org/10.1016/S1201-9712(00)90114-0
Kumar, A., Bhatt, S., Kumar, A., Rana, T. (2023). Canine rabies: an epidemiological significance, pathogenesis, diagnosis, prevention, and public health issues. Comp Immunol Microbiol Infect Dis. 97, 101992. PMid:37229956
2
https://doi.org/10.1016/j.cimid.2023.101992
Natesan, K., Isloor, S., Vinayagamurthy, B., Ramakrishnaiah, S., Doddamane, R., Fooks, A.R. (2023). Developments in rabies vaccines: the path traversed from Pasteur to the modern era of immunization. Vaccines (Basel) 11(4): 756. PMid:37112668 PMCid:PMC10147034
3
https://doi.org/10.3390/vaccines11040756
Zhou, X., Wang, H., Zhang, J., Guan, Y., Zhang, Y. (2024). Single-injection subunit vaccine for rabies prevention using lentinan as adjuvant. Int J Biol Macromol. 254 (Pt 3): 128118. PMid:37977452
4
https://doi.org/10.1016/j.ijbiomac.2023.128118
Coslett, G.D., Holloway, B.P., Obijeski, J.F. (1980). The structural proteins of rabies virus and evidence for their synthesis from separate monocistronic RNA species. J Gen Virol. 49(1): 161-180. PMid:7420062
5
https://doi.org/10.1099/0022-1317-49-1-161
Conzelmann, K.K., Cox, J.H., Schneider, L.G., Thiel, H.J. (1990). Molecular cloning and complete nucleotide sequence of the attenuated rabies virus SAD B19. Virology 175(2): 485-499. PMid:2139267
6
https://doi.org/10.1016/0042-6822(90)90433-R
Rahmahani, J., Suwarno, S., Yuniarti, W.M., Rantam, F.A. (2019). Antigenic site of nucleoprotein gene from Indonesian rabies virus isolates. Vet World. 12(5): 724-728. PMid:31327911 PMCid:PMC6584851
7
https://doi.org/10.14202/vetworld.2019.724-728
Dietzschold, B., Lafon, M., Wang, H., Otvos, L., Jr, Celis, E., Wunner, W. H., Koprowski, H. (1987). Localization and immunological characterization of antigenic domains of the rabies virus internal N and NS proteins. Virus Res. 8(2): 103 -125. PMid:2445121
8
https://doi.org/10.1016/0168-1702(87)90023-2
Celis, E., Karr, R., Dietzschold, B., Wunner, W., oprowski, H. (1988). Genetic restriction and fine pecificity of human T cell clones reactive with abies virus. J Immunol. 141(8): 2721-2728. PMid:2459225
9
https://doi.org/10.4049/jimmunol.141.8.2721
Lafon, M., Lafage, M., Martinez-Arends, A., amirez, R., Vuillier, F., Charron, D., Lotteau, V.,Scott-Algara, D. (1992). Evidence for a viral superantigen in humans. Nature 358, 507-510. PMid:1386410
10
https://doi.org/10.1038/358507a0
Goto, H., Minamoto, N., Ito, H., Luo, T.R., Sugiyama, M., Kinjo, T., Kawai, A. (1995). Expression of the nucleoprotein of rabies virus in Escherichia coli and mapping of antigenic sites. Arch Virol. 140(6): 1061-1074. PMid:7611878
11
https://doi.org/10.1007/BF01315415
Reddy, G.B., Singh, R., Singh, R.P., Singh, K.P., Gupta, P.K., Mahadevan, A., Shankar, S.K., et al. (2011). Molecular characterization of Indian rabies virus isolates by partial sequencing of nucleoprotein (N) and phosphoprotein (P) genes. Virus genes 43(1): 13-17. PMid:21452061
12
https://doi.org/10.1007/s11262-011-0601-0
Harlow, E., Lane, D. (1988). Antibodies: a laboratory manual. NY: Cold Spring Harbor Laboratory Press
13
Gan, H., Hou, X., Wang, Y., Xu, G., Huang, Z., Zhang, T., Lin, R., et al. (2023). Global burden of rabies in 204 countries and territories, from 1990 to 2019: results from the Global Burden of Disease Study 2019. Int J Infect Dis.126, 136-144. PMid:36343866
14
https://doi.org/10.1016/j.ijid.2022.10.046
Plotkin, S., Orenstein, W., Offit, P., Kathryn, M.E. (2018). Plotkin’s Vaccines - 7th Ed. Elsevier
15
Minke, J.M., Audonnet, J.C., Fischer, L. (2004). Equine viral vaccines: the past, present and future. Vet Res. 35(4): 425-443. PMid:15236675
16
https://doi.org/10.1051/vetres:2004019
Lyu, X. (2023). Rabies proteins functions and future directions. Theoret Nat Sci. 21, 53-58.
17
https://doi.org/10.54254/2753-8818/21/20230812
Hampson, K., Coudeville, L., Lembo, T., Sambo, M., Kieffer, A., Attlan, M., Barrat, J., et al. (2015). Estimating the global burden of endemic canine rabies. PLoS Negl Trop Dis. 9(4): e0003709. PMid:25881058 PMCid:PMC4400070
18
https://doi.org/10.1371/journal.pntd.0003709
Morales, M.M., Rico, R.G., Gómez, O.J., Aguilar, S.A. (2006). Immunologic importance of the N protein in the rabies virus infection. Rev Vet Méx. 37(3): 351-367.
19
Loza-Rubio, E., & Rojas-Anaya, E. (2014). Edible Rabies vaccines. In: J. Howard, E. Hood (Eds.), Commercial plant-produced recombinant protein products (pp. 153-177). Biotechnology in Agriculture and Forestry, Vol. 68. Berlin, Heidelberg: Springer PMCid:PMC7120656
20
https://doi.org/10.1007/978-3-662-43836-7_9
Johnson, N., Cunningham, A.F., Fooks, A.R. (2010). The immune response to rabies virus infection and vaccination. Vaccine 28(23): 3896-3901. PMid:20368119
21
https://doi.org/10.1016/j.vaccine.2010.03.039
Picotto, L.D., Sguazza, G.H., Tizzano, M.A., Galosi, C.M., Cavalitto, S.F., Pecoraro, M.R. (2017). An effective and simplified DO-stat control strategy for production of rabies glycoprotein in Pichia pastoris. Protein Expr Purif. 132, 124-130. PMid:28189633
22
https://doi.org/10.1016/j.pep.2017.02.004
Tursunov, K., Begaliyeva, A., Ingirbay, B., Mukanov, K., Ramanculov, E., Shustov, A., Mukantayev, K. (2017). Cloning and expression of fragment of the rabies virus nucleoprotein gene in Escherichia coli and evaluation of antigenicity of the expression product. Iran J Vet Res. 18(1): 36-42.
23
Qin, S., Volokhov, D., Rodionova, E., Wirblich, C., Schnell, M.J., Chizhikov, V., Dabrazhynetskaya, A. (2019). A new recombinant rabies virus expressing a green fluorescent protein: A novel and fast approach to quantify virus neutralizing antibodies. Biol: J Int Assoc Biol Stand. 59, 56-61. PMid:30898479
24
https://doi.org/10.1016/j.biologicals.2019.03.002
Valentinotti, S., Srinivasan, B., Holmberg, U., Bonvin, D., Cannizzaro, C., Rhiel, M., Von Stockar, U. (2003). Optimal operation of fed-batch fermentations via adaptive control of overflow metabolite, Control Eng Pract. 11(6): 665-674.
25
https://doi.org/10.1016/S0967-0661(02)00172-7
Babaeipour, V., Shojaosadati, S.A., Robatjazi, S.M., Khalilzadeh, R., Maghsoudi, N. (2007). Over-production of human interferon-γ by HCDC of recombinant Escherichia coli. Process Biochem. 42(1): 112-117.
26
https://doi.org/10.1016/j.procbio.2006.07.009
Babaeipour, V., Mofid, M.R., Khanchezar, R., Faraji, F., Abolghasemi, S. (2017). Bench-scale Overproduction and Purification of recombinant GCSF in Escherichia coli fed-batch process. J Appl Pharm Sci. 7(8): 149-155.
27