Original Scientific Article RABIES VIRUS NUCLEOPROTEIN: LARGE-SCALE EXPRESSION IN PROKARYOTIC SYSTEM Rabies is controlled by mass animal vaccination campaigns. Cats, dogs, and wild animals (e.g., bats) are large reservoirs of this virus and can pose a significant threat to the human health, especially in the developing countries. The nucleoprotein of the rabies virus is of great scientific interest since it has the potential to generate immunity in animals and can be used as for immunochemical diagnostics. The study aimed to test a large-scale expression of the rabies N protein in a prokaryotic system. The recombinant N protein was successfully expressed and purified. It was immunologically recognized by specific antibodies and was able to induce the production of specific antibodies in a mouse immunization assay. These encouraging results indicate that the recombinant N protein can be evaluated as an antigen for the development of a subunit vaccine or for a diagnostic assay. https://macvetrev.mk/LoadArticlePdf/361 2024-10-15 151 158 https://doi.org/10.2478/macvetrev-2024-0026 rabies virus nucleoprotein Escherichia coli large-scale expression Leandro Daniel Picotto false 1 1Reproductive Biotechnology, National Agricultural Technology Institute, (INTA), Ruta 226 km 73.5, 7620, Balcarce, Argentina AUTHOR Carlos Javier Panei javierpanei@fcv.unlp.edu.ar false 2 Virology Laboratory, Faculty of Veterinary Sciences, National University of La Plata, 60& 118, CC 296, 1900, La Plata, Argentina; National Scientific and Technical Research Council (CONICET), Argentina LEAD_AUTHOR Marcelo Ricardo Pecoraro false 3 Virology Laboratory, Faculty of Veterinary Sciences, National University of La Plata, 60& 118, CC 296, 1900, La Plata, Argentina AUTHOR Guillermo Hernán Sguazza false 4 Virology Laboratory, Faculty of Veterinary Sciences, National University of La Plata, 60& 118, CC 296, 1900, La Plata, Argentina AUTHOR Martinez, L. (2000). Global infectious disease surveillance. Int J Infect Dis. 4(4): 222-228. PMid:11231187 1 https://doi.org/10.1016/S1201-9712(00)90114-0 Kumar, A., Bhatt, S., Kumar, A., Rana, T. (2023). Canine rabies: an epidemiological significance, pathogenesis, diagnosis, prevention, and public health issues. Comp Immunol Microbiol Infect Dis. 97, 101992. PMid:37229956 2 https://doi.org/10.1016/j.cimid.2023.101992 Natesan, K., Isloor, S., Vinayagamurthy, B., Ramakrishnaiah, S., Doddamane, R., Fooks, A.R. (2023). Developments in rabies vaccines: the path traversed from Pasteur to the modern era of immunization. Vaccines (Basel) 11(4): 756. PMid:37112668 PMCid:PMC10147034 3 https://doi.org/10.3390/vaccines11040756 Zhou, X., Wang, H., Zhang, J., Guan, Y., Zhang, Y. (2024). Single-injection subunit vaccine for rabies prevention using lentinan as adjuvant. Int J Biol Macromol. 254 (Pt 3): 128118. PMid:37977452 4 https://doi.org/10.1016/j.ijbiomac.2023.128118 Coslett, G.D., Holloway, B.P., Obijeski, J.F. (1980). The structural proteins of rabies virus and evidence for their synthesis from separate monocistronic RNA species. J Gen Virol. 49(1): 161-180. PMid:7420062 5 https://doi.org/10.1099/0022-1317-49-1-161 Conzelmann, K.K., Cox, J.H., Schneider, L.G., Thiel, H.J. (1990). Molecular cloning and complete nucleotide sequence of the attenuated rabies virus SAD B19. Virology 175(2): 485-499. PMid:2139267 6 https://doi.org/10.1016/0042-6822(90)90433-R Rahmahani, J., Suwarno, S., Yuniarti, W.M., Rantam, F.A. (2019). Antigenic site of nucleoprotein gene from Indonesian rabies virus isolates. Vet World. 12(5): 724-728. PMid:31327911 PMCid:PMC6584851 7 https://doi.org/10.14202/vetworld.2019.724-728 Dietzschold, B., Lafon, M., Wang, H., Otvos, L., Jr, Celis, E., Wunner, W. H., Koprowski, H. (1987). Localization and immunological characterization of antigenic domains of the rabies virus internal N and NS proteins. Virus Res. 8(2): 103 -125. PMid:2445121 8 https://doi.org/10.1016/0168-1702(87)90023-2 Celis, E., Karr, R., Dietzschold, B., Wunner, W., oprowski, H. (1988). Genetic restriction and fine pecificity of human T cell clones reactive with abies virus. J Immunol. 141(8): 2721-2728. PMid:2459225 9 https://doi.org/10.4049/jimmunol.141.8.2721 Lafon, M., Lafage, M., Martinez-Arends, A., amirez, R., Vuillier, F., Charron, D., Lotteau, V.,Scott-Algara, D. (1992). Evidence for a viral superantigen in humans. Nature 358, 507-510. PMid:1386410 10 https://doi.org/10.1038/358507a0 Goto, H., Minamoto, N., Ito, H., Luo, T.R., Sugiyama, M., Kinjo, T., Kawai, A. (1995). Expression of the nucleoprotein of rabies virus in Escherichia coli and mapping of antigenic sites. Arch Virol. 140(6): 1061-1074. PMid:7611878 11 https://doi.org/10.1007/BF01315415 Reddy, G.B., Singh, R., Singh, R.P., Singh, K.P., Gupta, P.K., Mahadevan, A., Shankar, S.K., et al. (2011). Molecular characterization of Indian rabies virus isolates by partial sequencing of nucleoprotein (N) and phosphoprotein (P) genes. Virus genes 43(1): 13-17. PMid:21452061 12 https://doi.org/10.1007/s11262-011-0601-0 Harlow, E., Lane, D. (1988). Antibodies: a laboratory manual. NY: Cold Spring Harbor Laboratory Press 13 Gan, H., Hou, X., Wang, Y., Xu, G., Huang, Z., Zhang, T., Lin, R., et al. (2023). Global burden of rabies in 204 countries and territories, from 1990 to 2019: results from the Global Burden of Disease Study 2019. Int J Infect Dis.126, 136-144. PMid:36343866 14 https://doi.org/10.1016/j.ijid.2022.10.046 Plotkin, S., Orenstein, W., Offit, P., Kathryn, M.E. (2018). Plotkin’s Vaccines - 7th Ed. Elsevier 15 Minke, J.M., Audonnet, J.C., Fischer, L. (2004). Equine viral vaccines: the past, present and future. Vet Res. 35(4): 425-443. PMid:15236675 16 https://doi.org/10.1051/vetres:2004019 Lyu, X. (2023). Rabies proteins functions and future directions. Theoret Nat Sci. 21, 53-58. 17 https://doi.org/10.54254/2753-8818/21/20230812 Hampson, K., Coudeville, L., Lembo, T., Sambo, M., Kieffer, A., Attlan, M., Barrat, J., et al. (2015). Estimating the global burden of endemic canine rabies. PLoS Negl Trop Dis. 9(4): e0003709. PMid:25881058 PMCid:PMC4400070 18 https://doi.org/10.1371/journal.pntd.0003709 Morales, M.M., Rico, R.G., Gómez, O.J., Aguilar, S.A. (2006). Immunologic importance of the N protein in the rabies virus infection. Rev Vet Méx. 37(3): 351-367. 19 Loza-Rubio, E., & Rojas-Anaya, E. (2014). Edible Rabies vaccines. In: J. Howard, E. Hood (Eds.), Commercial plant-produced recombinant protein products (pp. 153-177). Biotechnology in Agriculture and Forestry, Vol. 68. Berlin, Heidelberg: Springer PMCid:PMC7120656 20 https://doi.org/10.1007/978-3-662-43836-7_9 Johnson, N., Cunningham, A.F., Fooks, A.R. (2010). The immune response to rabies virus infection and vaccination. Vaccine 28(23): 3896-3901. PMid:20368119 21 https://doi.org/10.1016/j.vaccine.2010.03.039 Picotto, L.D., Sguazza, G.H., Tizzano, M.A., Galosi, C.M., Cavalitto, S.F., Pecoraro, M.R. (2017). An effective and simplified DO-stat control strategy for production of rabies glycoprotein in Pichia pastoris. Protein Expr Purif. 132, 124-130. PMid:28189633 22 https://doi.org/10.1016/j.pep.2017.02.004 Tursunov, K., Begaliyeva, A., Ingirbay, B., Mukanov, K., Ramanculov, E., Shustov, A., Mukantayev, K. (2017). Cloning and expression of fragment of the rabies virus nucleoprotein gene in Escherichia coli and evaluation of antigenicity of the expression product. Iran J Vet Res. 18(1): 36-42. 23 Qin, S., Volokhov, D., Rodionova, E., Wirblich, C., Schnell, M.J., Chizhikov, V., Dabrazhynetskaya, A. (2019). A new recombinant rabies virus expressing a green fluorescent protein: A novel and fast approach to quantify virus neutralizing antibodies. Biol: J Int Assoc Biol Stand. 59, 56-61. PMid:30898479 24 https://doi.org/10.1016/j.biologicals.2019.03.002 Valentinotti, S., Srinivasan, B., Holmberg, U., Bonvin, D., Cannizzaro, C., Rhiel, M., Von Stockar, U. (2003). Optimal operation of fed-batch fermentations via adaptive control of overflow metabolite, Control Eng Pract. 11(6): 665-674. 25 https://doi.org/10.1016/S0967-0661(02)00172-7 Babaeipour, V., Shojaosadati, S.A., Robatjazi, S.M., Khalilzadeh, R., Maghsoudi, N. (2007). Over-production of human interferon-γ by HCDC of recombinant Escherichia coli. Process Biochem. 42(1): 112-117. 26 https://doi.org/10.1016/j.procbio.2006.07.009 Babaeipour, V., Mofid, M.R., Khanchezar, R., Faraji, F., Abolghasemi, S. (2017). Bench-scale Overproduction and Purification of recombinant GCSF in Escherichia coli fed-batch process. J Appl Pharm Sci. 7(8): 149-155. 27