Original Scientific Article ACTIVE ROLE OF LACTOFERRIN ON ARSENIC AND IMIDACLOPRID TOXICITY IN BROILER CHICKS This work aimed to evaluate the lactoferrin (LF) effect on arsenic (As) and imidacloprid (IMI) toxicity in broiler chicks. One-week old broiler chicks (n=105) were divided into seven groups (x15 each). The animals were orally supplemented with As, IMI, and/or LF for 4 weeks as follows: Control (G1) no supplements, G2 supplemented with As, G3 supplemented with IMI, G4 supplemented with As+IMI, G5 supplemented with As+LF, G6 supplemented with IMI+LF, G7 supplemented with As+IMI+LF. Body weight and weight gain were recorded on weekly interval. Blood, serum, liver, kidney, and muscle samples were collected at the end of the experimental period for biochemical and histopathological examination. Body weight performance, hematological, serum, and liver tissue biochemical analysis revealed adverse changes in G2, G3, and G4 compared to control, G5, G6, and G7. There was higher tissue residue of As and IMI in G4 and G5 compared to G5, G6, and G7. Liver histopathological changes in the groups supplemented with As and/or IMI were observed with necrosis, congestion, and inflammatory cell aggregates. The use of LF in broiler chicks improves weight gain performance and modulates the adverse effects of As and/or IMI toxicity. https://macvetrev.mk/LoadArticlePdf/361 2024-10-15 167 178 https://doi.org/10.2478/macvetrev-2024-0028 lactoferrin effect arsenic toxicity imidacloprid toxicity histopathology broilers chicks Marwa Fouad Hassan false 1 Department of Biochemistry, Toxicology and Feed Deficiency, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Dokki, Giza, Egypt AUTHOR Asmaa Gamal Abd El Monsef false 2 Department of Biochemistry, Toxicology and Feed Deficiency, Animal Health Research Institute (AHRI), Zagazig Branch, Agricultural Research Center (ARC), Zagazig, Egypt AUTHOR Nermin Farouq El Zohairy false 3 Department of Biochemistry, Toxicology and Feed Deficiency, Animal Health Research Institute (AHRI), Zagazig Branch, Agricultural Research Center (ARC), Zagazig, Egypt AUTHOR Sanaa Mohamed Salem false 4 Department of Pathology, Animal Health Research Institute (AHRI), Zagazig Branch, Agricultural Research Center (ARC), Zagazig, Egypt AUTHOR Safaa Mohamed Elmesalamy false 5 Department of Biochemistry, Toxicology and Feed Deficiency, Animal Health Research Institute (AHRI), Zagazig Branch, Agricultural Research Center (ARC), Zagazig, Egypt AUTHOR Hamada Mahmoud Yousif hamadayousif82@gmail.com false 6 Department of Biochemistry, Toxicology and Feed Deficiency, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Dokki, Giza, Egypt LEAD_AUTHOR Mogda Kamel Mansour false 7 Department of Biochemistry, Toxicology and Feed Deficiency, Animal Health Research Institute (AHRI), Agricultural Research Center (ARC), Dokki, Giza, Egypt AUTHOR Valskys, V., Hassan, H.R., Wołkowicz, S., Satkūnas, J., Kibirkštis, G., Ignatavičius, G. (2022). A review on detection techniques, health hazards and human health risk assessment of arsenic pollution in soil and groundwater. Minerals 12(10): 1326. 1 https://doi.org/10.3390/min12101326 Paswan, S., Niyogi, D., Choudhary, P.K., Raghubanshi, D. (2018). Ameliorating effect of ascorbic acid on clinicopathological changes of induced sub-acute arsenic toxicity in broiler birds. Int J Curr Microbiol App Sci. Special Issue 7, 5084-5094. 2 Ahmad, S., Kitchin, K.T., Cullen, W.R. (2000). Arsenic species that cause release of iron from ferritin and generation of activated oxygen. Arch Biochem Biophys. 382(2): 195-202. PMid:11068869 3 https://doi.org/10.1006/abbi.2000.2023 Ford, M. (2002). Arsenic. In: L.R. Goldfrank, N. Flomnbaum, N. Lewin, M.A. Howland, R. Hoffman, L. Nelson (Eds.), Goldfrank’s Toxicological Emergencies, 7th Ed. (pp. 1183-1195). New York, USA: McGraw-Hill 4 Craddock, H.A., Huang, D., Turner, P.C., Quirós-Alcalá, L., Payne-Sturges, D.C. (2019). Trends in neonicotinoid pesticide residues in food and water in the United States, 1999-2015. Environ Health 18, 7. PMid:30634980 PMCid:PMC6330495 5 https://doi.org/10.1186/s12940-018-0441-7 Thompson, D.A., Lehmler, H.J., Kolpin, D.W., Hladik, M.L., Vargo, J.D., Schilling, K.E., Le-Fevre, G.H., et al. (2020). A critical review on the potential impacts of neonicotinoid insecticide use: current knowledge of environmental fate, toxicity, and implications for human health. Environ Sci Processes Impacts. 22, 1315-1346. PMid:32267911 6 https://doi.org/10.1039/C9EM00586B Lv, Y., Bing, Q., Lv, Z., Xue, J., Li, S., Han, B., Yang, Q., et al. (2020). Imidacloprid-induced liver fibrosis in quails via activation of the TGF-β1/Smad pathway. Sci Total Environ. 705, 135915. PMid:31835194 7 https://doi.org/10.1016/j.scitotenv.2019.135915 Wang, X., Anadón, A., Wu, Q., Qiao, F., Ares, I., Martínez-Larrañaga, M.R., Yuan, Z., Martínez, M.A. ( impact on oxidative stress and metabolism. Ann Rev Pharmacol Toxicol. 58, 471-507. PMid:28968193 8 https://doi.org/10.1146/annurev-pharmtox-010617-052429 Ravikanth, V., Lakshman, M., Madhuri, D., Kalakumar, B. (2018). Effect of spinosad and male broilers and its amelioration with vitamin E and silymarin. Int J Curr Microbiol App Sci. 7(4): 2186-2192. 9 https://doi.org/10.20546/ijcmas.2018.704.248 Mahajan, L., Verma, P.K., Raina, R., Sood, S. (2018). Toxic effects of imidacloprid combined with arsenic: oxidative stress in rat liver. Toxicol Ind Health. 34(10): 726-735. PMid:30033815 10 https://doi.org/10.1177/0748233718778993 Vega-Bautista, A., de la Garza, M., Carrero, J.C., Campos-Rodríguez, R., Godínez-Victoria, M., Drago-Serrano, M.E. (2019). The impact of lactoferrin on the growth of intestinal inhabitant bacteria. Int J Mol Sci. 20(19): 4707. PMid:31547574 PMCid:PMC6801499 11 https://doi.org/10.3390/ijms20194707 Olyayee, M., Javanmard, A., Janmohammadi, H., Kianfar, R., Alijani, S., Ghelenj, S.A.M. (2023). Supplementation of broiler chicken diets with bovine lactoferrin improves growth performance, histological parameters of jejunum and immune-related gene expression. J Anim Physiol Anim Nutr. 107(1): 200-213. PMid:35102621 12 https://doi.org/10.1111/jpn.13683 Kell, D.B., Heyden, E.L., Pretorius, E. (2020). The biology of lactoferrin, an iron-binding protein that can help defend against viruses and bacteria. Front Immunol. 11, 1221. PMid:32574271 PMCid:PMC7271924 13 https://doi.org/10.3389/fimmu.2020.01221 Legrand, D., Elass, E., Carpentier, M., Mazurier, M. (2005). Lactoferrin: a modulator of immune and inflammatory responses. Cell Mol Life Sci. 62, 2549. PMid:16261255 PMCid:PMC7079806 14 https://doi.org/10.1007/s00018-005-5370-2 Abd El Monsef, A.G., El Zohairy, N.F., Hassan, M.F., Salem, S.M., Gouda, A.A., Mansour, M.K., Alkhaldi, A.A.M., et al. (2024). Effects of prebiotic (lactoferrin) and diclazuril on broiler chickens experimentally infected with Eimeria tenella. Front Vet Sci. 11, 1416459. PMid:39036795 PMCid:PMC11258017 15 https://doi.org/10.3389/fvets.2024.1416459 Inns, R.H., Bright, J.E., Marrs, T.C. (1988). Comparative acute systemic toxicity of sodium arsenite and dichloro (2~hlorovinyl) arsine in rabbits. Toxicology 51(2-3): 213-222. PMid:3176029 16 https://doi.org/10.1016/0300-483X(88)90151-5 Kammon, A.M., Brar, R.S., Banga, H.S., Sodhi, S. (2012). Ameliorating effects of vitamin E and selenium on immunological alterations induced by imidacloprid chronic toxicity in chickens. J Environ Anal Toxicol. S4. 17 https://doi.org/10.4172/2161-0525.S4-007 Enany, M.E., Algammal, A.M., Solimane, R.T., El-Sissi, A.F., Hebashy, A.A. (2017). Evaluation of lactoferrin immunomodulatory effect on the immune response of broiler chickens. SCVMJ 22(1): 135-146. 18 https://doi.org/10.21608/scvmj.2017.62452 Uluozlu, O.D., Tuzen, M., Mendil, D., Soylak, M. (2009). Assessment of trace element contents of chicken products from turkey. J Hazard Mater. 163(2-3): 982-987. PMid:18752893 19 https://doi.org/10.1016/j.jhazmat.2008.07.050 Dewangan, G., Patra, P.H., Mishra, A., Singh, A.K., Dutta, B.K., Sar, T.K., Chakraborty, A.K., Mandal, T.K. (2012). Haemobiochemical, immunological, antioxidant status and residues of flumethrin following weekly dermal application in goats. Toxicol Environ Chem. 94(2): 377-387. 20 https://doi.org/10.1080/02772248.2011.641968 Suvarna, K.S., Layton, C., Bancroft, J.D. (2018). Bancroft’s theory and practice of histological techniques, 8th Ed. Netherlands: E-Book, Elsevier Health Sciences 21 Feldman, B.F., Zinkl, J.G., Jain, N.C. (2000). Schalm’s veterinary hematology. 5th Ed. Canada: Lippincott Williams and Wilkins 22 Anderson, C.B., Latimer, R.S. (1990). Cyto-chemical staining characteristics of chickens heterophils and eosinophils. Vet Clin Pathol. 19(2): 51-54. PMid:12684938 23 https://doi.org/10.1111/j.1939-165X.1990.tb00543.x Davis, B. (1964). Disk electrophoresis - II Method and application to human serum protein. Ann N Y Acad Sci. 121(2): 404-427. PMid:14240539 24 https://doi.org/10.1111/j.1749-6632.1964.tb14213.x Pang, S., Han, B., Wu, P., Yang, X., Liu, Y., Li, J., Lv, Z., Zhang, Z. (2024). Resveratrol alleviates inorganic arsenic-induced ferroptosis in chicken brain via activation of the Nrf2 signaling pathway. Pestic Biochem Physiol. 201, 105885. PMid:38685251 25 https://doi.org/10.1016/j.pestbp.2024.105885 Eleiwa, N.Z., El-Shabrawi, A.A., Ibrahim, D., Abdelwarith, A.A., Younis, E.M., Davies, S.J., Metwally, M.M.M., Abu-Zeid, E.H. (2023). Dietary curcumin modulating effect on performance, antioxidant status, and immune-related response of broiler chickens exposed to imidacloprid insecticide. Animals 13(23): 3650. PMid:38067001 PMCid:PMC10705146 26 https://doi.org/10.3390/ani13233650 Kawakami, H., Hiratsuka, M., Dosako, S. (1988). Effects of iron-saturated lactoferrin on iron absorption. Agric Biol Chem. 52(4): 903-908. 27 https://doi.org/10.1080/00021369.1988.10868784 Duker, A., Carranza, E., Hale, M. (2005) Arsenic geochemistry and health. Environ Int. 31(5): 631-641. PMid:15910959 28 https://doi.org/10.1016/j.envint.2004.10.020 Khandia, R., Pathe, C.S., Vishwakarma, P., Dhama, K., Munjal, A. (2020). Evaluation of the ameliorative effects of Phyllanthus niruri on the deleterious insecticide imidacloprid in the vital organs of chicken embryos. J Ayurveda Integ Med. 11(4): 495-501. PMid:31757597 PMCid:PMC7772494 29 https://doi.org/10.1016/j.jaim.2019.03.003 Conte, F.M., Cestonaro, L.V., Piton, Y.V., Guimaraes, N., Garcia, S.C., da Silva, D., Arbo, M.D. (2022). Toxicity of pesticides widely applied on soybean cultivation: synergistic effects of fipronil, glyphosate and imidacloprid in HepG2 cells. Toxicol In Vitro 84, 105446. PMid:35850439 30 https://doi.org/10.1016/j.tiv.2022.105446 Abdel-Hameid, N.A.H. (2009). A protective effect of calcium carbonate against arsenic toxicity of the Nile catfish (Clarias gariepinus). Turk J Fish Aquat Sci. 9(2): 191-200. 31 Arfat, Y., Mahmood, N., Tahir, M.U., Rashid, M., Anjum, S., Zhao, F., Li, D.J., et al. (2014). Effect of imidacloprid on hepatotoxicity and nephrotoxicity in male albino mice. Toxicol Rep. 1, 554-561. PMid:28962268 PMCid:PMC5598541 32 https://doi.org/10.1016/j.toxrep.2014.08.004 Eid, Y.Z., Omara, Y., Ragab, A., Ismail, A., Zommara, M., Dawood, M.A.O. (2023). Mitigation of Imidacloprid Toxicity in Poultry Chicken by Selenium Nanoparticles, Growth Performance, Lipid Peroxidation, and Blood Traits. Biol Trace Elem Res. 201, 5379-5388.PMid:36790585 PMCid:PMC10509070 33 https://doi.org/10.1007/s12011-023-03592-5 Li, J., Guo, C., Liu, Y., Han, B., Lv, Z., Jiang, H., Li, S., Zhang, Z. (2024). Chronic arsenic exposureprovoked biotoxicity involved in liver-microbiotagut axis disruption in chickens based on multi-omics technologies. J Adv Res. S2090-1232(24)00032-8. 34 https://doi.org/10.1016/j.jare.2024.01.019 Wang, Y.H., Wang, Y.Q., Yu, X.G., Lin, Y., Liu, J.X., Wang, W.Y., Yan, C.H. (2023). Chronic environmental inorganic arsenic exposure causes social behavioral changes in juvenile zebra fish (Danio rerio). Sci Total Environ. 867, 161296. PMid:36592900 35 https://doi.org/10.1016/j.scitotenv.2022.161296 Aggarwal, M., Naraharisetti, S.B., Sarkar, S.N., Rao, G.S., Degen, G.H., Malik, J.K. (2009). Effects of subchronic coexposure to arsenic and endosulfan on the erythrocytes of broiler chickens: a biochemical study. Arch Environ Contam Toxicol. 56(1): 139-148. PMid:18443843 36 https://doi.org/10.1007/s00244-008-9171-0 Johnson, W.M., Wilson-Delfosse, A.L., Mieyal, J.J. (2012). Dysregulation of glutathione homeostasis in neurodegenerative diseases. Nutrients 4(10): 1399-1440. PMid:23201762 PMCid:PMC3497002 37 https://doi.org/10.3390/nu4101399 Sattar, A., Khan, A., Hussain, H.I., He, C., Hussain, R., Zhiqiang, S., Saleemi, M.K., Gul, S.T. (2016). Immunosuppressive effects of arsenic in broiler chicks exposed to Newcastle disease virus. J Immunotoxicol. 13(6): 861-869. PMid:27687888 38 https://doi.org/10.1080/1547691X.2016.1217105 Roy, C.L., Jankowski, M.D., Ponder, J., Chen, D. (2020). Sublethal and lethal methods to detect recent imidacloprid exposure in birds with application to field studies. Environ Toxicol Chem. 39(7): 1355-1366. PMid:32274821 PMCid:PMC8164728 39 https://doi.org/10.1002/etc.4721 Ahmed, S., Siddiqui, M.S.I., Islam, K., Islam, M.N., Gani, M.U., Moonmoon, S., Rashid, M.H., Awal, M.A. (2016). Arsenic deposition in different organs or tissues in an experimental toxicosis of White New-Zealand Rabbit. Asian J Med Biol Res. 2(3): 422-428. 40 https://doi.org/10.3329/ajmbr.v2i3.30113