Original Scientific Article
THE EFFECT OF BEETROOT EXTRACT WITH SILVER NANO PARTICLES ON RUMEN PARAMETERS IN AWASSI LAMBS
Beetroot (Beta vulgaris) is a root vegetable with deep red color, rich in vitamins, minerals, fiber and antioxidants, having numerous health benefits. The current study aimed to determine the effect of beetroot extract with silver nanoparticles (AgNPs) on the rumen pH, ammonia, volatile fatty acids (VFAs), total bacterial and protozoal count in Awassi lambs. The beetroot extract was obtained by Soxhlet apparatus. The AgNPs were synthesized from the aqueous beetroot extract. Ten lambs aged (3-6 months) were reared in similar environmental and feeding conditions and were divided into two groups: G1 – fed with AgNPs-Beetroot (AgNPs-BR), orally (3 mg/kg/Bw), daily for 8 weeks; and G2, fed with normal saline. Rumen samples were measured at 2, 4, 6, and 8 weeks after administering AgNPs-BR. Rumen pH was significantly lower in G1 than in G2. The ammonia levels were non-significantly different in the 2nd and the 4th week. However, significant differences were observed at the 6th week. The VFAs, total bacterial, and protozoal count were significantly higher in G1. AgNPs-BR improved rumen function by altering its pH, ammonia, and VFAs concentration, as well as the total bacteria and protozoa count. Therefore, it can be concluded that AgNPs-BR may yield increased economic efficiency in sheep farming.
https://macvetrev.mk/LoadArticlePdf/361
2025-03-15
77
85
https://doi.org/10.2478/macvetrev-2025-0017
beetroot
silver nanoparticles
lambs
rumen
ammonia
volatile fatty acid
Tamara
Natiq
Dawood
tamara.natiq@covm.uobaghdad.edu.iq
false
1
College of Veterinary Medicine, University of Baghdad, Iraq
LEAD_AUTHOR
Gledhill, D. (2008). The names of plants. (p. 70). New York: Cambridge University Press
1
https://doi.org/10.1017/CBO9780511550898
Pin, P.A., Zhang, W., Vogt, S.H., et al. (2012). The role of a pseudo-response regulator gene in life cycle adaptation and domestication of Beet. Curr Biol. 22(12): 1095-1101. PMid:22608508
2
https://doi.org/10.1016/j.cub.2012.04.007
Sarfaraz, S., Ikram, R., Osama M., Anser, H. (2020). Effect of different doses of lyophilized beetroot on fertility and reproductive hormones. Pak J Pharm Sci. 33(6): 2505-2510.
3
Waghorn, G.C., Collier, K. Bryant, M., Dalley, D.E. (2018). Feeding fodder beet (Beta vulgaris L.) with either barley straw or pasture silage to non-lactating dairy cows. N Z Vet J. 66(4): 178-185. PMid:29669474
4
https://doi.org/10.1080/00480169.2018.1465484
Mohammed, M.D., Elamin, K.M., Amin, A.E., Hassan, H.E., Khalid, A.F. (2012). Effects of feeding Beta vulgaris saccharifera bulb for fattening desert lambs under tropical conditions of Sudan. Vet World. 5(6): 330-334.
5
https://doi.org/10.5455/vetworld.2012.330-334
Dalley, D., Waugh, D., Griffin, A., Higham, C., de Ruiter, J., Malcolm, B. (2020). Productivity and environmental implications of fodder beet and maize silage as supplements to pasture for late lactation dairy cows. N Z J Agric Res. 63(1): 145-164.
6
https://doi.org/10.1080/00288233.2019.1675717
Saldias, B., Gibbs, S.J. (2016). Brief communication: ad libitum fodder-beet and pasture beef-finishing systems: Intake, utilization, grazing behaviour and liveweight gains. Proceedings of the N Z Soc Anim Prod. 76, 87-89
7
Zebeli, Q., Metzler-Zebeli, B.U. (2012). Interplay between rumen digestive disorders and diet-induced inflammation in dairy cattle. Res Vet Sci. 93(3): 1099-1108. PMid:22370295
8
https://doi.org/10.1016/j.rvsc.2012.02.004
Waghorn, G.C., Law, N., Bryant, M., Pacheco, D., Dalley, D. (2018). Digestion and nitrogen excretion by Holstein-Friesian cows in late lactation offered ryegrass-based pasture supplemented with fodder beet. Anim Prod Sci. 59(7): 1261-1270.
9
https://doi.org/10.1071/AN18018
Pacheco, D., Muetzel, S., Lewis, S., Dalley, D., Bryant, M., Waghorn G.C. (2020). Rumen digesta and products of fermentation in cows fed varying proportions of fodder beet (Beta vulgaris) with fresh pasture or silage or straw. Anim Prod Sci. 60(4): 524-534
10
https://doi.org/10.1071/AN18002
De Silva, C., Nawawi, N.M., Abd Karim, M.M., Abd Gani, S., Masarudin, M.J., Gunasekaran, B., Ahmad, S.A. (2021). The mechanistic action of biosynthesised silver nanoparticles and its Animals (Basel) 11(7): 2097. PMid:34359224 PMCid:PMC8300251
11
https://doi.org/10.3390/ani11072097
Goetsch, A.L. (1999). Growing and finishing performance by lambs differing in growth potential consuming diets during growing varying in levels of Res. 31(3): 245-257
12
https://doi.org/10.1016/S0921-4488(98)00137-0
Dawood, T.N. (2014). The effect of Ocimum basilicum and Cuminum cyminum seeds on the weight gain and rumen activity and fermentation in Awassi rams. Iraqi J Vet Med. 38(2): 108-113
13
https://doi.org/10.30539/iraqijvm.v38i2.231
Wiley, R.C., Lee, Y.N. (1987). Recovery of betalaines from red beets by a diffusion-extraction procedure. J Food Sci. 43, 1056-1058.
14
https://doi.org/10.1111/j.1365-2621.1978.tb15231.x
Smith, J., Lee, R., Khan, A. (2020). Synthesis of silver nanoparticles from beetroot extract using soxhlet extraction method. J Nanotechnol Res. 12(4): 135-142.
15
Mehdizadeh, S., Ghasemi, N., Ramezani, M. (2019). The synthesis of silver nanoparticles using beetroot extract and its antibacterial and catalytic activity. Eurasian Chem Commun. 1(6): 545-558.
16
https://doi.org/10.33945/SAMI/ECC.2019.6.5
AOAC (Association of Official Analytical Chemists). (2005). Official of analysis, 18th ed. Gaithersburg, Maryland, USA: AOAC Inter
17
Weichselbaun, T.E., Hagerty, J.C., Mark Jr., H.B. (1969). A reaction rate method for ammonia and blood urea nitrogene utilizing a pentacynonitrsylferrate catalyzed berthelot reaction. Anal Chem. 41(6): 848-850. PMid:5788025
18
https://doi.org/10.1021/ac60275a046
Atlas, R.M., Brown, A.E., Parks, L.C. (1995). Laboratory manual of experimental microbiology. USA: Mosby-Year Book Inc.
19
Huws, S.A., Kim, E.J., Kingston-Smith, A.H., Lee, M.R., Muetzel, S.M., Cookson, A.R., et al. (2009). Rumen protozoa are rich in polyunsaturated fatty acids due toEcol. 69(3): 461-471. PMid:19583786
20
https://doi.org/10.1111/j.1574-6941.2009.00717.x
Martin, C., Williams, A.G., Michalet-Doreau, B. (1994). Isolation and characteristics of the protozoal and bacterial fractions from bovine ruminal contents. J Anim Sci. 72(11): 2962-2968. PMid:7730192
21
https://doi.org/10.2527/1994.72112962x
Tymensen, L., Barkley, C., McAllister, T.A. (2012). Relative diversity and community structure analysis of rumen protozoa according to T-RFLP and microscopic methods. J Microbiol Methods. 88(1): 1-6. PMid:22033497
22
https://doi.org/10.1016/j.mimet.2011.09.005
Daniel, W. (2009). Biostatistics: a foundation for analysis in the health sciences. 9th ed. USA: John Wiley and Sons Inc.
23
Guo, Y., Xu, X., Zou, Y., Yang, Z., Li, S., Cao, Z. (2013). Changes in feed intake, nutrient digestion, plasma metabolites, and oxidative stress parameters inits regulation with pelleted beet pulp. J Anim Sci
24
https://doi.org/10.1186/2049-1891-4-31
Fleming, A.E., Garrett, K., Froehlich, K., Beck, M.R., Mangwe, M.C., Bryant, R.H., Edwards, G., Gregorini, P. (2021). Rumen function and grazing with fodder beet. J Dairy Sci. 104(7): 7696-7710. PMid:33865586
25
https://doi.org/10.3168/jds.2020-19324
Veterinary Clinics of North America (VCNA). (1989). Food animal practice. 5(2): 237-249. PMid:2667705
26
https://doi.org/10.1016/S0749-0720(15)30974-9
Dawood, T.N., Kareem, E.H. (2020). Effect of nanomaterial on animal and human health: A review. Plant Arch. 20(Suppl. 1): 2530-2536.
27
El-Khodery, S., El-Boshy, M., Gaafar, K., Elmashad, A. (2008). Hypocalcaemia in Ossimi vulgaris). Turk J Vet Anim Sci. 32(3): 199-205.
28
Dickie, C.W., Hamann, M.H., Carroll, W.D., Chow, F.H. (1978). Oxalate (Rumex venosus) poisoning in cattle. J Am Vet Med Assoc. 173(1): 73-74.
29
Williams, C.L., Thomas, B.J., McEwan, N.R., Stevens, P.R., Creevey, C.J., Huws, S.A. (2020). Rumen protozoa play a significant role in fungal Microbiol. 11, 720. PMid:32411103 PMCid:PMC7200989
30
https://doi.org/10.3389/fmicb.2020.00720
Carlson, S.A., Sharma, V.K., McCuddin, Z.P., Involvement of a Salmonella genomic island 1 gene in the rumen protozoan-mediated enhancement of 75(2): 792-800. PMid:17145942 PMCid:PMC1828496
31
https://doi.org/10.1128/IAI.00679-06
Stanford, K., Bach, S.J., Stephens, T.P., Mcallister, T.A. (2010). Effect of rumen protozoa on Escherichia coli O157:H7 in the rumen and feces of specifically faunated sheep. J Food Prot. 73(12): 2197-2202. PMid:21219736
32
https://doi.org/10.4315/0362-028X-73.12.2197
Rai, M., Yadav, A., Gade, A. (2009). Silver Biotechnol Adv. 27(1): 76-83. PMid:18854209
33
https://doi.org/10.1016/j.biotechadv.2008.09.002
Prasad, R., Pandey, R., Babu, K.D., Yadav, V., Saha, S., (2017). Silver nanoparticles as antimicrobial agents: a case study on E. coli as a model for gram-negative bacteria. Curr Nanosci. 13(4): 391-403.
34
Sarkar, S., Jana, A.D., Samanta, S.K., Mostafa, G., (2007). Selective toxicity of gold nanoparticles for bacteria over fungi mediated by particle dose. Nanotechnol. 18(38): 385102.
35
https://doi.org/10.1088/0957-4484/18/38/385102
Huws, S.A., Kim, E.J., Lee, M.R., Scott, M.B. (2018). Rumen microbiome adaptation in response to nano-structured materials. Front Microbiol. 9, 185.
36
Li, Q., Mahendra, S., Lyon, D.Y., Brunet, L., Liga, M.V., Li, D., Alvarez, P.J. (2008). Antimicrobial nanomaterialsfor water disinfection and microbial control: potential applications and implications. Water Res. 42(18): 4591-4602. PMid:18804836
37
https://doi.org/10.1016/j.watres.2008.08.015
Plaizier, J.C., Krause, D.O., Gozho, G.N., McBride, B.W. (2008). Subacute ruminal acidosis in dairy cows: the Vet J. 176(1): 21-31. PMid:18329918
38
https://doi.org/10.1016/j.tvjl.2007.12.016
Mertens, D.R. (1997). Creating a system for meeting the fiber requirements of dairy cows. J Dairy Sci. 80(7): 1463-1481. PMid:9241608
39
https://doi.org/10.3168/jds.S0022-0302(97)76075-2
Fleming, A., Garrett, K., Froehlich, K., Beck, M., Bryant, R.H., Edwards, G., Gregorini, P. (2020). Supplementation of spring pasture with harvested increases risk of subacute ruminal acidosis during early lactation. Animals (Basel) 10(8): 1307. PMid:32751524 PMCid:PMC7460450
40
https://doi.org/10.3390/ani10081307