Original Scientific Article
EVALUATION OF THE EFFICIENCY OF DETECTION OF BACTERIAL DNA IN MILK AND TISSUE SAMPLES FROM CATTLE, SHEEP, AND GOATS BY CONVENTIONAL AND NESTED PCR TARGETING COM1, SOD AND TRANSPOSASE IS1111 GENES OF COXIELLA BURNETII GENOME
Q fever is a worldwide zoonosis, caused by Coxiella burnetii, an obligate intracellular bacterium that affects both humans and animals. The serious consequences on human health and the economic losses it causes, require the use of rapid, accurate, and sensitive diagnostic methods for its detection. PCR is the most widely used method for the molecular detection of Coxiella burnetii. Considering available information on the different sensitivity of PCR assays according to the selected genetic targets to be amplified, the present study aimed to compare the effectiveness of conventional and nested PCRs performed with primers Trans1/2, OMP1-4, and CB1/CB2 for the detection of Coxiella burnetii genome in samples, obtained from cattle, sheep and goats. Thirty archival DNAs, extracted from placentae, vaginal swabs, bulk tank milk samples, and cheese were tested. The highest level of detection was found when samples were tested with nested PCR with primers OMP1-4, targeting the Com1 gene (96.3%), and to a lesser extent with conventional PCR (56.7% positivity), performed with primers Trans1/2, encompassing a part of the IS1111 insertion sequence. A correlation was found between the detection efficiency of some primers and the type and origin of the samples. The results show that the sensitivity of the various PCR protocols for the detection of Coxiella burnetii could vary, thus the results obtained with one genetic marker should be interpreted with caution.
https://macvetrev.mk/LoadArticlePdf/408
2024-04-10
5
13
https://doi.org/10.2478/macvetrev-2025-0020
Coxiella burnetii
ruminants
PCR
primers
detection efficiency
Konstantin Borisov
Simeonov
false
1
Department of Epizootiology and Animal Infectious Diseases, National Diagnostic and Research Veterinary Medical Institute “Prof. Dr. G. Pavlov”, 15 Pencho Slaveikov Blvd, 1606 Sofia, Bulgaria
AUTHOR
Keytlin Venelinova
Todorova
false
1
Department of Epizootiology and Animal Infectious Diseases, National Diagnostic and Research Veterinary Medical Institute “Prof. Dr. G. Pavlov”, 15 Pencho Slaveikov Blvd, 1606 Sofia, Bulgaria
AUTHOR
Petia Dinkova
Genova-Kalou
false
3
Department of Virology, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd, 1504 Sofia, Bulgaria
AUTHOR
Madariaga, M.G., Rezai, K., Trenholme, G.M., Weinstein, R.A. (2003). Q fever: a biological weapon in your backyard. Lancet Infect Dis. 3(11): 709-721.,Pmid:14592601
1
https://doi.org/10.1016/S1473-3099(03)00804-1
Angelakis, E., Raoult, D. (2010). Q fever - review. Vet Microbiol. 140(3-4): 297-309.,Pmid:19875249
2
https://doi.org/10.1016/j.vetmic.2009.07.016
Maurin, M., Raoult, D. (1999). Q fever. Clin Microbiol Rev. 12(4): 518-553.,Pmid:10515901 PMCid:PMC88923
3
https://doi.org/10.1128/CMR.12.4.518
Melenotte, C., Protopopescu, C., Million, M., Edouard, S., Carrieri, M.P., Eldin, C., Angelakis, E., et al. (2018). Clinical features and complications of Coxiella burnetii infections from the French National Reference Center for Q fever. JAMA Network Open. 1(4): e181580.,Pmid:30646123 PMCid:PMC6324270
4
https://doi.org/10.1001/jamanetworkopen.2018.1580
Eldin, C., Mélenotte, C., Mediannikov, O., Ghigo, E., Million, M., Edouard, S., Mege, J.L., et al. (2017). From Q Fever to Coxiella burnetii infection: a paradigm change. Clin Microbiol Rev. 30(1): 115-190.,Pmid:27856520 PMCid:PMC5217791
5
https://doi.org/10.1128/CMR.00045-16
Agerholm, J.S. (2013). Coxiella burnetii associated reproductive disorders in domestic animals -a critical review. Acta Vet Scand. 55(1): 13.,Pmid:23419216 PMCid:PMC3577508
6
https://doi.org/10.1186/1751-0147-55-13
Astobiza, I., Barandika, J.F., Ruiz-Fons, F., Hurtado, A., Povedano, I., Juste, R.A., García-Pérez, A.L. (2011). Coxiella burnetii shedding and environmental contamination at lambing in two highly naturallyinfected dairy sheep flocks after vaccination. Res Vet Sci. 91(3): e58-63.,Pmid:21168178
7
https://doi.org/10.1016/j.rvsc.2010.11.014
Arricau-Bouvery, N., Souriau, A., Lechopier, P., Rodolakis, A. (2003). Experimental Coxiella burnetii infection in pregnant goats: Excretion routes. Vet Res. 34(4): 423-433.,Pmid:12911859
8
https://doi.org/10.1051/vetres:2003017
Berri, M., Laroucau, K., Rodolakis, A. (2000). The detection of Coxiella burnetii from ovine genital swabs, milk and fecal samples by the use of a single touchdown polymerase chain reaction. Vet Microbiol. 72(3-4): 285-293.,Pmid:10727838
9
https://doi.org/10.1016/S0378-1135(99)00178-9
Fournier, P.E., Raoult, D. (2003). Comparison of PCR and serology assays for early diagnosis of acute Q fever. J Clin Microbiol. 41(11): 5094-5098.,Pmid:14605144 PMCid:PMC262519
10
https://doi.org/10.1128/JCM.41.11.5094-5098.2003
Van den Brom, R., van Engelen, E., Roest, H.I., van der Hoek, W., Vellema, P. (2015). Coxiella burnetii infections in sheep or goats: an opinionated review. Vet Microbiol. 181 (1-2): 119-129.,Pmid:26315774
11
https://doi.org/10.1016/j.vetmic.2015.07.011
Sahu, R., Rawool, D.B., Vinod, V.K., Malik, S.V.S., Barbuddhe, S.B. (2020). Current approaches for the detection of Coxiella burnetii infection in humans and animals. J Microbiol Methods. 179, 106087.,Pmid:33086105
12
https://doi.org/10.1016/j.mimet.2020.106087
Zhang, G.Q., Hotta, A., Mizutani, M., Ho, T., Yamaguchi, T., Fukushi, H., Hirai, K. (1998). Direct identification of Coxiella burnetii plasmids in human sera by nested PCR. J Clin Microbiol.36(8): 2210-2213.,Pmid:9665993 PMCid:PMC105014
13
https://doi.org/10.1128/JCM.36.8.2210-2213.1998
Stein, A., Raoult, D. (1992). Detection of Coxiella burnetti by DNA amplification using polymerase chain reaction. J Clin Microbiol. 30(9): 2462-2466.,Pmid:1401016 PMCid:PMC265524
14
https://doi.org/10.1128/jcm.30.9.2462-2466.1992
Zhang, G.Q., Nguyen, S.V., To, H., Ogawa, M., Hotta, A., Yamaguchi, T., Kim, H.J., et al. (1998). Clinical evaluation of a new PCR assay for detection of Coxiella burnetii in human serum samples. J Clin Microbiol. 36(1): 77-80.,Pmid:9431924 PMCid:PMC124811
15
https://doi.org/10.1128/JCM.36.1.77-80.1998
Berri, M., Arricau-Bouvery, N., Rodolakis, A. (2003). PCR-based detection of Coxiella burnetii from clinical samples. Methods Mol Biol. 216, 153-161.,Pmid: 1251236265
16
https://doi.org/10.1385/1-59259-344-5:153
Hoover, T.A., Vodkin, M.H., Williams, J.C. (1992). A Coxiella burnetti repeated DNA element resembling a bacterial insertion sequence. J Bacteriol.174(17): 5540-5548.,Pmid:1324903 PMCid:PMC206497
17
https://doi.org/10.1128/jb.174.17.5540-5548.1992
Klee, S.R., Ellerbrok, H., Tyczka, J., Franz, T., Appel, B. (2006). Evaluation of a real-time PCR assay to detect Coxiella burnetii. Ann N Y Acad Sci. 1078, 563-565.,Pmid:17114778
18
https://doi.org/10.1196/annals.1374.111
Denison, A.M., Thompson, H.A., Massung, R.F. (2007). IS1111 insertion sequences of Coxiella burnetii: characterization and use for repetitive element PCR-based differentiation of Coxiella burnetii isolates. BMC Microbiol. 7, 91.,Pmid:17949485 PMCid:PMC2104537
19
https://doi.org/10.1186/1471-2180-7-91
de Bruin, A., de Groot, A., de Heer, L., Bok, J., Wielinga, P.R., Hamans, M., van Rotterdam, B.J., Janse, I. (2011). Detection of Coxiella burnetii in complex matrices by using multiplex quantitative PCR during a major Q fever outbreak in The Netherlands. Appl Environ Microbiol. 77(18): 6516-6523.,Pmid:21784920 PMCid:PMC3187144
20
https://doi.org/10.1128/AEM.05097-11
Marmion, B.P., Storm, P.A., Ayres, J.G., Semendric, L., Mathews, L., Winslow, W., Turra, M., Harris, R.J. (2005). Long-term persistence of Coxiella burnetii after acute primary Q fever. QJM 98(1): 7-20.,Pmid:15625349
21
https://doi.org/10.1093/qjmed/hci009
Kargar, M., Rashidi, A., Doosti, A., Najafi, A., Ghorbani-Dalini, S. (2015). The sensitivity of the PCR method for detection of Coxiella burnetii in the milk samples. ZJRMS 17(6): e988.
22
https://doi.org/10.17795/zjrms988
Basanisi, M.G., La Bella, G., Nobili, G., Raele, D.A., Cafiero, M.A., Coppola, R., Damato, A.M., et al. (2022). Detection of Coxiella burnetii DNA in sheep and goat milk and dairy products by droplet digital PCR in south Italy. Int J Food Microbiol.366, 109583.,Pmid:35182931
23
https://doi.org/10.1016/j.ijfoodmicro.2022.109583
Edouard, S., Raoult, D. (2016). Lyophilization to improve the sensitivity of qPCR for bacterial DNA detection in serum: the Q fever paradigm. J Med Microbiol. 65(6): 462-467.,Pmid:27008653
24
https://doi.org/10.1099/jmm.0.000253
Jones, R.M., Twomey, D.F., Hannon, S., Errington, J., Pritchard, G.C., Sawyer, J. (2010). Detection of Coxiella burnetii in placenta and abortion samples from British ruminants using real-time PCR. Vet Rec. 167(25): 965-967.,Pmid:21262712
25
https://doi.org/10.1136/vr.c4040
Ogawa, M., Setiyono, A., Sato, K., Cai, Y., Shiga, S., Kishimoto, T. (2004). Evaluation of PCR and nested PCR assays currently used for detection of Coxiella burnetii in Japan. Southeast Asian J Trop Med Public Health. 35(4): 852-855.
26
Mares-Guia, M.A.M.M., Guterres, A., Rozental, T., Ferreira, M.D.S., Lemos, E.R.S. (2018). Clinical and epidemiological use of nested PCR targeting the repetitive element IS1111 associated with the transposase gene from Coxiella burnetii. Braz J Microbiol. 49(1): 138-143.,Pmid:28899604 PMCid:PMC5790644
27
https://doi.org/10.1016/j.bjm.2017.04.009
Abiri, Z., Khalili, M., Kostoulas, P., Sharifi, H., Rad, M., Babaei, H. (2019). Bayesian estimation of sensitivity and specificity of a PCR method to detect Coxiella burnetii in milk and vaginal secretions in sheep and goat samples. J Dairy Sci. 102(6): 4954-4959.,Pmid:31005328
28
https://doi.org/10.3168/jds.2018-15233
Klee, S.R., Tyczka, J., Ellerbrok, H., Franz, T., Linke, S., Baljer, G., Appel, B. (2006). Highly sensitive real-time PCR for specific detection and quantification of Coxiella burnetii. BMC Microbiol. 6, 2.,Pmid:16423303 PMCid:PMC1360083
29
https://doi.org/10.1186/1471-2180-6-2
Rolain, J.M., Raoult, D. (2005). Molecular detection of Coxiella burnetii in blood and sera during Q fever. QJM 98(8): 615-617.,Pmid:16027172
30
https://doi.org/10.1093/qjmed/hci099
Gardner, B., Bachmann, N., Polkinghorne, A., Hufschmid, J., Tadepalli, M., Marenda, M., Graves, S., et al. (2023). Novel marine mammal Coxiella burnetii-genome sequencing identifies a new genotype with potential virulence. Pathogens. 12(7): 893.,Pmid:37513739 PMCid:PMC10386718
31
https://doi.org/10.3390/pathogens12070893
Huggett, J.F., Novak, T., Garson, J.A., Green, C., Morris-Jones, S.D., Miller, R.F., Zumla, A. (2008). Differential susceptibility of PCR reactions to inhibitors: an important and unrecognized phenomenon. BMC Res Notes. 1, 70.,Pmid:18755023 PMCid:PMC2564953
32
https://doi.org/10.1186/1756-0500-1-70