Original Scientific Article EVALUATION OF THE EFFICIENCY OF DETECTION OF BACTERIAL DNA IN MILK AND TISSUE SAMPLES FROM CATTLE, SHEEP, AND GOATS BY CONVENTIONAL AND NESTED PCR TARGETING COM1, SOD AND TRANSPOSASE IS1111 GENES OF COXIELLA BURNETII GENOME Q fever is a worldwide zoonosis, caused by Coxiella burnetii, an obligate intracellular bacterium that affects both humans and animals. The serious consequences on human health and the economic losses it causes, require the use of rapid, accurate, and sensitive diagnostic methods for its detection. PCR is the most widely used method for the molecular detection of Coxiella burnetii. Considering available information on the different sensitivity of PCR assays according to the selected genetic targets to be amplified, the present study aimed to compare the effectiveness of conventional and nested PCRs performed with primers Trans1/2, OMP1-4, and CB1/CB2 for the detection of Coxiella burnetii genome in samples, obtained from cattle, sheep and goats. Thirty archival DNAs, extracted from placentae, vaginal swabs, bulk tank milk samples, and cheese were tested. The highest level of detection was found when samples were tested with nested PCR with primers OMP1-4, targeting the Com1 gene (96.3%), and to a lesser extent with conventional PCR (56.7% positivity), performed with primers Trans1/2, encompassing a part of the IS1111 insertion sequence. A correlation was found between the detection efficiency of some primers and the type and origin of the samples. The results show that the sensitivity of the various PCR protocols for the detection of Coxiella burnetii could vary, thus the results obtained with one genetic marker should be interpreted with caution. https://macvetrev.mk/LoadArticlePdf/408 2024-04-10 5 13 https://doi.org/10.2478/macvetrev-2025-0020 Coxiella burnetii ruminants PCR primers detection efficiency Konstantin Borisov Simeonov false 1 Department of Epizootiology and Animal Infectious Diseases, National Diagnostic and Research Veterinary Medical Institute “Prof. Dr. G. Pavlov”, 15 Pencho Slaveikov Blvd, 1606 Sofia, Bulgaria AUTHOR Keytlin Venelinova Todorova false 1 Department of Epizootiology and Animal Infectious Diseases, National Diagnostic and Research Veterinary Medical Institute “Prof. Dr. G. Pavlov”, 15 Pencho Slaveikov Blvd, 1606 Sofia, Bulgaria AUTHOR Petia Dinkova Genova-Kalou false 3 Department of Virology, National Centre of Infectious and Parasitic Diseases, 26 Yanko Sakazov Blvd, 1504 Sofia, Bulgaria AUTHOR Madariaga, M.G., Rezai, K., Trenholme, G.M., Weinstein, R.A. (2003). Q fever: a biological weapon in your backyard. Lancet Infect Dis. 3(11): 709-721.,Pmid:14592601 1 https://doi.org/10.1016/S1473-3099(03)00804-1 Angelakis, E., Raoult, D. (2010). Q fever - review. Vet Microbiol. 140(3-4): 297-309.,Pmid:19875249 2 https://doi.org/10.1016/j.vetmic.2009.07.016 Maurin, M., Raoult, D. (1999). Q fever. Clin Microbiol Rev. 12(4): 518-553.,Pmid:10515901 PMCid:PMC88923 3 https://doi.org/10.1128/CMR.12.4.518 Melenotte, C., Protopopescu, C., Million, M., Edouard, S., Carrieri, M.P., Eldin, C., Angelakis, E., et al. (2018). Clinical features and complications of Coxiella burnetii infections from the French National Reference Center for Q fever. JAMA Network Open. 1(4): e181580.,Pmid:30646123 PMCid:PMC6324270 4 https://doi.org/10.1001/jamanetworkopen.2018.1580 Eldin, C., Mélenotte, C., Mediannikov, O., Ghigo, E., Million, M., Edouard, S., Mege, J.L., et al. (2017). From Q Fever to Coxiella burnetii infection: a paradigm change. Clin Microbiol Rev. 30(1): 115-190.,Pmid:27856520 PMCid:PMC5217791 5 https://doi.org/10.1128/CMR.00045-16 Agerholm, J.S. (2013). Coxiella burnetii associated reproductive disorders in domestic animals -a critical review. Acta Vet Scand. 55(1): 13.,Pmid:23419216 PMCid:PMC3577508 6 https://doi.org/10.1186/1751-0147-55-13 Astobiza, I., Barandika, J.F., Ruiz-Fons, F., Hurtado, A., Povedano, I., Juste, R.A., García-Pérez, A.L. (2011). Coxiella burnetii shedding and environmental contamination at lambing in two highly naturallyinfected dairy sheep flocks after vaccination. Res Vet Sci. 91(3): e58-63.,Pmid:21168178 7 https://doi.org/10.1016/j.rvsc.2010.11.014 Arricau-Bouvery, N., Souriau, A., Lechopier, P., Rodolakis, A. (2003). Experimental Coxiella burnetii infection in pregnant goats: Excretion routes. Vet Res. 34(4): 423-433.,Pmid:12911859 8 https://doi.org/10.1051/vetres:2003017 Berri, M., Laroucau, K., Rodolakis, A. (2000). The detection of Coxiella burnetii from ovine genital swabs, milk and fecal samples by the use of a single touchdown polymerase chain reaction. Vet Microbiol. 72(3-4): 285-293.,Pmid:10727838 9 https://doi.org/10.1016/S0378-1135(99)00178-9 Fournier, P.E., Raoult, D. (2003). Comparison of PCR and serology assays for early diagnosis of acute Q fever. J Clin Microbiol. 41(11): 5094-5098.,Pmid:14605144 PMCid:PMC262519 10 https://doi.org/10.1128/JCM.41.11.5094-5098.2003 Van den Brom, R., van Engelen, E., Roest, H.I., van der Hoek, W., Vellema, P. (2015). Coxiella burnetii infections in sheep or goats: an opinionated review. Vet Microbiol. 181 (1-2): 119-129.,Pmid:26315774 11 https://doi.org/10.1016/j.vetmic.2015.07.011 Sahu, R., Rawool, D.B., Vinod, V.K., Malik, S.V.S., Barbuddhe, S.B. (2020). Current approaches for the detection of Coxiella burnetii infection in humans and animals. J Microbiol Methods. 179, 106087.,Pmid:33086105 12 https://doi.org/10.1016/j.mimet.2020.106087 Zhang, G.Q., Hotta, A., Mizutani, M., Ho, T., Yamaguchi, T., Fukushi, H., Hirai, K. (1998). Direct identification of Coxiella burnetii plasmids in human sera by nested PCR. J Clin Microbiol.36(8): 2210-2213.,Pmid:9665993 PMCid:PMC105014 13 https://doi.org/10.1128/JCM.36.8.2210-2213.1998 Stein, A., Raoult, D. (1992). Detection of Coxiella burnetti by DNA amplification using polymerase chain reaction. J Clin Microbiol. 30(9): 2462-2466.,Pmid:1401016 PMCid:PMC265524 14 https://doi.org/10.1128/jcm.30.9.2462-2466.1992 Zhang, G.Q., Nguyen, S.V., To, H., Ogawa, M., Hotta, A., Yamaguchi, T., Kim, H.J., et al. (1998). Clinical evaluation of a new PCR assay for detection of Coxiella burnetii in human serum samples. J Clin Microbiol. 36(1): 77-80.,Pmid:9431924 PMCid:PMC124811 15 https://doi.org/10.1128/JCM.36.1.77-80.1998 Berri, M., Arricau-Bouvery, N., Rodolakis, A. (2003). PCR-based detection of Coxiella burnetii from clinical samples. Methods Mol Biol. 216, 153-161.,Pmid: 1251236265 16 https://doi.org/10.1385/1-59259-344-5:153 Hoover, T.A., Vodkin, M.H., Williams, J.C. (1992). A Coxiella burnetti repeated DNA element resembling a bacterial insertion sequence. J Bacteriol.174(17): 5540-5548.,Pmid:1324903 PMCid:PMC206497 17 https://doi.org/10.1128/jb.174.17.5540-5548.1992 Klee, S.R., Ellerbrok, H., Tyczka, J., Franz, T., Appel, B. (2006). Evaluation of a real-time PCR assay to detect Coxiella burnetii. Ann N Y Acad Sci. 1078, 563-565.,Pmid:17114778 18 https://doi.org/10.1196/annals.1374.111 Denison, A.M., Thompson, H.A., Massung, R.F. (2007). IS1111 insertion sequences of Coxiella burnetii: characterization and use for repetitive element PCR-based differentiation of Coxiella burnetii isolates. BMC Microbiol. 7, 91.,Pmid:17949485 PMCid:PMC2104537 19 https://doi.org/10.1186/1471-2180-7-91 de Bruin, A., de Groot, A., de Heer, L., Bok, J., Wielinga, P.R., Hamans, M., van Rotterdam, B.J., Janse, I. (2011). Detection of Coxiella burnetii in complex matrices by using multiplex quantitative PCR during a major Q fever outbreak in The Netherlands. Appl Environ Microbiol. 77(18): 6516-6523.,Pmid:21784920 PMCid:PMC3187144 20 https://doi.org/10.1128/AEM.05097-11 Marmion, B.P., Storm, P.A., Ayres, J.G., Semendric, L., Mathews, L., Winslow, W., Turra, M., Harris, R.J. (2005). Long-term persistence of Coxiella burnetii after acute primary Q fever. QJM 98(1): 7-20.,Pmid:15625349 21 https://doi.org/10.1093/qjmed/hci009 Kargar, M., Rashidi, A., Doosti, A., Najafi, A., Ghorbani-Dalini, S. (2015). The sensitivity of the PCR method for detection of Coxiella burnetii in the milk samples. ZJRMS 17(6): e988. 22 https://doi.org/10.17795/zjrms988 Basanisi, M.G., La Bella, G., Nobili, G., Raele, D.A., Cafiero, M.A., Coppola, R., Damato, A.M., et al. (2022). Detection of Coxiella burnetii DNA in sheep and goat milk and dairy products by droplet digital PCR in south Italy. Int J Food Microbiol.366, 109583.,Pmid:35182931 23 https://doi.org/10.1016/j.ijfoodmicro.2022.109583 Edouard, S., Raoult, D. (2016). Lyophilization to improve the sensitivity of qPCR for bacterial DNA detection in serum: the Q fever paradigm. J Med Microbiol. 65(6): 462-467.,Pmid:27008653 24 https://doi.org/10.1099/jmm.0.000253 Jones, R.M., Twomey, D.F., Hannon, S., Errington, J., Pritchard, G.C., Sawyer, J. (2010). Detection of Coxiella burnetii in placenta and abortion samples from British ruminants using real-time PCR. Vet Rec. 167(25): 965-967.,Pmid:21262712 25 https://doi.org/10.1136/vr.c4040 Ogawa, M., Setiyono, A., Sato, K., Cai, Y., Shiga, S., Kishimoto, T. (2004). Evaluation of PCR and nested PCR assays currently used for detection of Coxiella burnetii in Japan. Southeast Asian J Trop Med Public Health. 35(4): 852-855. 26 Mares-Guia, M.A.M.M., Guterres, A., Rozental, T., Ferreira, M.D.S., Lemos, E.R.S. (2018). Clinical and epidemiological use of nested PCR targeting the repetitive element IS1111 associated with the transposase gene from Coxiella burnetii. Braz J Microbiol. 49(1): 138-143.,Pmid:28899604 PMCid:PMC5790644 27 https://doi.org/10.1016/j.bjm.2017.04.009 Abiri, Z., Khalili, M., Kostoulas, P., Sharifi, H., Rad, M., Babaei, H. (2019). Bayesian estimation of sensitivity and specificity of a PCR method to detect Coxiella burnetii in milk and vaginal secretions in sheep and goat samples. J Dairy Sci. 102(6): 4954-4959.,Pmid:31005328 28 https://doi.org/10.3168/jds.2018-15233 Klee, S.R., Tyczka, J., Ellerbrok, H., Franz, T., Linke, S., Baljer, G., Appel, B. (2006). Highly sensitive real-time PCR for specific detection and quantification of Coxiella burnetii. BMC Microbiol. 6, 2.,Pmid:16423303 PMCid:PMC1360083 29 https://doi.org/10.1186/1471-2180-6-2 Rolain, J.M., Raoult, D. (2005). Molecular detection of Coxiella burnetii in blood and sera during Q fever. QJM 98(8): 615-617.,Pmid:16027172 30 https://doi.org/10.1093/qjmed/hci099 Gardner, B., Bachmann, N., Polkinghorne, A., Hufschmid, J., Tadepalli, M., Marenda, M., Graves, S., et al. (2023). Novel marine mammal Coxiella burnetii-genome sequencing identifies a new genotype with potential virulence. Pathogens. 12(7): 893.,Pmid:37513739 PMCid:PMC10386718 31 https://doi.org/10.3390/pathogens12070893 Huggett, J.F., Novak, T., Garson, J.A., Green, C., Morris-Jones, S.D., Miller, R.F., Zumla, A. (2008). Differential susceptibility of PCR reactions to inhibitors: an important and unrecognized phenomenon. BMC Res Notes. 1, 70.,Pmid:18755023 PMCid:PMC2564953 32 https://doi.org/10.1186/1756-0500-1-70