Original Scientific Article
Use of nano-collagen creams extracted from catfish skin in treatment of second-degree skin burns in rabbits
Second-degree burns typically require a longer healing period and can develop hypertrophic scars. Collagen plays a crucial role in treating and healing skin wounds. This study aimed to investigate the effect of topically applied nano-collagen extracted from catfish skin on rabbit burn wounds by assessing the production of collagen and the development of fibroblasts in the healing wounds. The nano-collagen material was produced in two stages by using NaOH and alcohol solutions in the first, and acetic acid solution in the second phase. The viscous solution obtained in this process was adjusted to a specific pH, was centrifuged, and was mixed with Vaseline before being lyophilized. Thirty skin samples from burn wounds were obtained from blemish-free rabbits. Each rabbit was treated by inflicting a 50 mm2 burn wound on the back. They were divided into three subgroups: a control group (G1, n=10) without wound treatment, a group topically treated with nano-collagen cream on a daily basis for one week (G2, n=10) and a group treated by sewing catfish skin onto their wounds (G3, n=10). Measurements were taken daily during the first week to monitor any possible post-burn contractions. G2 had significantly the lowest wound diameter after 7 days of treatment (35.00±1.21 mm). It had significantly the lowest wound contraction (8.200±0.042 kg/cm2) on 21 days of the treatment and had higher observable vascularization and development of hair follicles in the wounds compared to the other groups. In conclusion, the topical application of catfish skin nano-collagen cream significantly reduces second-degree burn wounds in rabbits and improves the healing process.
https://macvetrev.mk/LoadArticlePdf/411
2024-03-16
i
xii
https://doi.org/10.2478/macvetrev-2025-0021
nano-collagen
catfish skin
burn wound
skin
rabbits
Ahmed
K.
Munahi
false
1
Department of Surgery and Obstetrics, College of Veterinary Medicine, University of Al-Qadisiyah, Al-Qadisiyah-Al-Diwaniyah, Iraq
AUTHOR
Abbas
Ali H.
Allban
false
1
Department of Surgery and Obstetrics, College of Veterinary Medicine,University of Al-Qadisiyah, Al-Qadisiyah-Al-Diwaniyah, Iraq
AUTHOR
Rafid
H.
Farman
false
3
Department of Surgery and Obstetrics, College of Veterinary Medicine,University of Al-Qadisiyah, Al-Qadisiyah-Al-Diwaniyah, Iraq
AUTHOR
Amir
I.
Towfik
false
3
Department of Surgery and Obstetrics, College of Veterinary Medicine,University of Al-Qadisiyah, Al-Qadisiyah-Al-Diwaniyah, Iraq
AUTHOR
Jeschke, MG, van Baar, ME, Choudhry, MA, Chung, KK, Gibran, NS, Logsetty, S. (2020). Burn injury. Nat Rev Dis Primers. 6, 11. PMid:32054846 PMCid:PMC7224101
1
https://doi.org/10.1038/s41572-020-0145-5
Kittiphattanabawon, P., Benjakul, S., Sinthusamran, S., Kishimura, H. (2015). Characteristics of collagen from the skin of clown featherback (Chitala ornata). Int J Food Sci Technol. 50(9): 1972-1978.
2
https://doi.org/10.1111/ijfs.12864
Liu, D., Zhang, X., Li, T., Yang, H., Zhang, H., Regenstein, JM, Zhou, P. (2015). Extraction and characterization of acid- and pepsin-soluble collagens from the scales, skins and swim-bladders of grass carp (Ctenopharyngodon idella). Food Biosci. 9, 68-74.
3
https://doi.org/10.1016/j.fbio.2014.12.004
Mathew-Steiner, SS, Roy, S., Sen, CK (2021). Collagen in wound healing. Bioengineering 8(5): 63. PMid:34064689 PMCid:PMC8151502
4
https://doi.org/10.3390/bioengineering8050063
Lo, S., Fauzi, MB (2021). Current update of collagen nanomaterials-fabrication, characterization and its applications: a review. Pharmaceutics 13(3): 316. PMid:33670973 PMCid:PMC7997363
5
https://doi.org/10.3390/pharmaceutics13030316
Geahchan, S., Baharlouei, P., Rahman, A. (2022). Marine collagen: a promising biomaterial for wound healing, skin anti-aging, and bone regeneration. Mar Drugs. 20(1): 61. PMid:35049916 PMCid:PMC8780088
6
https://doi.org/10.3390/md20010061
Abbas, AA, Shakir, KA, Walsh, MK (2022). Functional properties of collagen extracted from catfish (Silurus triostegus) waste. Foods 11(5): 633. PMid:35267266 PMCid:PMC8909090
7
https://doi.org/10.3390/foods11050633
Rajabimashhadi, Z., Gallo, N., Salvatore, L., Lionetto, F. (2023). Collagen derived from fish industry waste: progress and challenges. Polymers 15(3): 544. PMid:36771844 PMCid:PMC9920587
8
https://doi.org/10.3390/polym15030544
Rajkumar S., RJ, J., Muthukumar Nadar, MSA, Selvakumar, PM (2018). Nanotechnology in wound healing-a review. Glob J Nanomed. 3(1): 555605.
9
Naskar, A., Kim, KS (2020). Recent advances in nanomaterial-based wound-healing therapeutics. Pharmaceutics 12(6): 499. PMid:32486142 PMCid:PMC7356512
10
https://doi.org/10.3390/pharmaceutics12060499
Luze, H., Nischwitz, SP, Smolle, C., Zrim, R., Kamolz, LP (2022). The use of acellular fish skin grafts in burn wound management-a systematic review. Medicine. 58(7): 912. PMid:35888631 PMCid:PMC9323726
11
https://doi.org/10.3390/medicina58070912
Carpio, KCR, Bezerra, RS, Cahú, TB, do Monte, FTD, Neri, RCA, da Silva, JF, dos Santos, PR, et al. (2023). Extraction and characterization of collagen from the skin of Amazonian freshwater fish pirarucu. Braz J Med Biol Res. 56, e12564. PMid:37194834 PMCid:PMC10242699
12
https://doi.org/10.1590/1414-431x2023e12564
Reneker, DH, Chun, I. (1996). Nanometre diameter fibers of polymer, produced by electrospinning. Nanotechnol. 7, 216.
13
https://doi.org/10.1088/0957-4484/7/3/009
Shalaby, M., Ghareeb, AZ, Khedr, SM, Mostafa, HM, Saeed, H., Hamouda. D. (2023). Nanoparticles of bioactive natural collagen for wound healing: Experimental approach. bioRxiv.
14
https://doi.org/10.1101/2023.02.21.529363
Waeytens, J., De Meutter, J., Goormaghtigh, E., Dazzi, A., Raussens, V. (2023). Determination of secondary structure of proteins by nanoinfrared spectroscopy. Anal Chem. 95(2): 621-627. PMid:36598929 PMCid:PMC9851152
15
https://doi.org/10.1021/acs.analchem.2c01431
Yang, S., Zhang, Q., Yang, H., Shi, H., Dong, A., Wang, L., Yu, S. (2022). Progress in infrared spectroscopy as an efficient tool for predicting protein secondary structure, Int J Biol Macromol. 206, 175-187. PMid:35217087
16
https://doi.org/10.1016/j.ijbiomac.2022.02.104
Suvarna, SK, Layton, C., Bancroft, JD (2019). Theory and practice of histological techniques, 8 th Ed. UK Elsevier Health Sci
17
Church, D., Elsayed, S., Reid, O., Winston, B., Lindsay, R. (2006). Burn wound infections. Clin Microbiol Rev. 19(2): 403- 434. PMid:16614255 PMCid:PMC1471990
18
https://doi.org/10.1128/CMR.19.2.403-434.2006
Kim, H., Shin, S., Han, D. (2022). Review of history of basic principles of burn wound management. Medicine (Kaunas). 58(3): 400. PMid:35334576 PMCid:PMC8954035
19
https://doi.org/10.3390/medicina58030400
Zhang, Q., Wang, Q., Lv, S., Lu, J., Jiang, S., Regenstein, JM, Lin, L. ( 2016). Comparison of collagen and gelatin extracted from the skins of Nile tilapia (Oreochromis niloticus) and channel catfish (Ictalurus punctatus). Food Biosci. 13, 41-48.
20
https://doi.org/10.1016/j.fbio.2015.12.005
Riaz, T., Zeeshan, R., Zarif, F., Ilyas, K., Muhammad, N., Safi, SZ, Rahim, A., et al. (2018). FTIR analysis of natural and synthetic collagen. Appl Spectrosc Rev. 53(9):703-746.
21
https://doi.org/10.1080/05704928.2018.1426595
Deana, NF, Zaror, C., Sol, M. d., Bagnato, VS, Alves, N. (2023). Wound contraction rate in excised and unexcised burn wounds with laser photobiomodulation: Systematic review and meta-analysis of preclinical studies. Burns 49(2): 261-274. PMid:35842272
22
https://doi.org/10.1016/j.burns.2022.05.009
Dhivya, S., Padma, VV, Santhini, E. (2015). Wound dressings – a review. Biomed (Taipei). 5(4): 22. PMid:26615539 PMCid:PMC4662938
23
https://doi.org/10.7603/s40681-015-0022-9
Hussein, AA, Munahi, AK, Farman, RH (2017). A comparison between Aloe vera and silver sulfadiazine on second-degree burns in local male rabbits: A Histological study. Al-Qadisiyah J Vet Med Sci. 17(1): 27-28.
24
https://doi.org/10.29079/vol17iss1art468
Tan, Y., Chang, SK (2018). Isolation and characterization of collagen extracted from channel catfish (Ictalurus punctatus) skin. Food Chem. 242, 147-155. PMid:29037670
25
https://doi.org/10.1016/j.foodchem.2017.09.013
Andini, A., Handajani, R., Soetjipto. (2017). Sangkuriang catfish (Clarias gariepinus var) skin extract activity on fibroblast and collagen synthesis for skin burn healing. Proceed. of Surabaya Int. Health Conf. 1(1): 347-352. https://conferences. unusa. ac.id /index.php/SIHC17/issue/ view/1
26
https://doi.org/10.33086/mhsj.v1i1.611
Vujičić, M., Broderick, I., Salmantabar, P., Perian, C., Nilsson, J., Sihlbom Wallem, C., Wernstedt Asterholm, I. (2024). A macrophage-collagen fragment axis mediates subcutaneous adipose tissue remodeling in mice. PNAS. 121(6): e2313185121. PMid:38300872 PMCid:PMC10861897
27
https://doi.org/10.1073/pnas.2313185121
Mbese, Z., Alven, S., Aderibigbe, BA (2021). Collagen-based nanofibers for skin regeneration and wound dressing applications. Polymers. 13(24): 4368. PMid:34960918 PMCid:PMC8703599
28
https://doi.org/10.3390/polym13244368
Munahi, AK, Hussein, AA, AL Haidri, DH, Mehjal, RG (2019). A comparison between Platelet-rich plasma and low-level laser therapy for the treatment of second degree burn in sheep. Kufa J Vet Med Sci. 10(2): 53-64.
29
https://doi.org/10.36326/kjvs/2019/v10i23314
Shpichka, A., Butnaru, D., Bezrukov, EA, Sukhanov, RB, Atala, A., Burdukovskii, V., Zhang, Y., Timashev, P. (2019).Skin tissue regeneration for burn injury. Stem Cell Res Ther. 10(1): 94. PMid:30876456 PMCid:PMC6419807
30
https://doi.org/10.1186/s13287-019-1203-3
Mulder, PPG, Vlig, M., Fasse, E., Stoop, MM, Pijpe, A., van Zuijlen, PPM, Joosten, I., et al. (2022). Burn-injured skin is marked by a prolonged local acute inflammatory response of innate immune cells and pro-inflammatory cytokines. Front Immun. 13, 1034420. PMid:36451819 PMCid:PMC9703075
31
https://doi.org/10.3389/fimmu.2022.1034420