Original Scientific Article
Phenotypic and molecular characterization of antimicrobial resistance in canine Staphylococci from North Macedonia
Antimicrobial resistance (AMR) in Staphylococcus spp. is a growing problem in small animal practice, driven by the emergence of methicillin-resistant (MR) and multidrug-resistant (MDR) strains. This study analyzed 170 clinical Staphylococcus isolates from dogs in North Macedonia, using MALDI-TOF MS identification, disc diffusion susceptibility testing, and molecular detection of resistance genes (mecA, mecC, and blaZ). Staphylococcus pseudintermedius was identified as the most prevalent species (90%), followed by S. aureus (7.6%), S. hemolyticus (1.2%), S. schleiferi (0.6%), and S. intermedius (0.6%). Methicillin resistance was detected in 28.8% of the isolates by detecting mecA. Importantly, there was a significant discrepancy between phenotypic oxacillin resistance and mecA-positive isolates in S. pseudintermedius. Among the 49 mecA-negative but oxacillin-resistant isolates tested for blaZ, 65.3% were blaZ-positive, underscoring the critical role of beta-lactamase-mediated resistance. Overall, MDR was detected in 70.5% of isolates. High resistance was observed to multiple antibiotics, including penicillin G (73%) and clindamycin (61.8%), as well as critically important antibiotics (CIAs), such as fluoroquinolones, with resistance rates of 32.3% for enrofloxacin and 31.2% for marbofloxacin. Pradofloxacin showed the lowest resistance rate (22.3%). This study highlights the high prevalence of antimicrobial resistance in Staphylococcus spp. in dogs. Implementation of antimicrobial stewardship programs is critical to maintain the efficacy of key antimicrobials and ensure optimal treatment outcomes for companion animals in North Macedonia.
https://macvetrev.mk/LoadArticlePdf/412
2024-04-30
i
xiv
https://doi.org/10.2478/macvetrev-2025-0022
Staphylococcus pseudintermedius
companion animals
methicillin resistance
beta-lactam resistance
multi-drug resistance
Ivana
Shikoska
false
1
Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, North Macedonia
AUTHOR
Zagorka
Popova Hristovska
false
2
Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, North Macedonia
AUTHOR
Ivan
Matevski
false
3
Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, North Macedonia
AUTHOR
Maja
Jurhar Pavlova
false
4
Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, 50 Divizija No. 6, 1000 Skopje, North Macedonia
AUTHOR
Marija
Ratkova Manovska
false
5
Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, North Macedonia
AUTHOR
Aleksandar
Cvetkovikj
false
6
Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, 50 Divizija No. 6, 1000 Skopje, North Macedonia
AUTHOR
Iskra
Cvetkovikj
false
7
Faculty of Medicine, Ss. Cyril and Methodius University in Skopje, 50 Divizija No. 6, 1000 Skopje, North Macedonia
AUTHOR
Pomba, C., Rantala, M., Greko, C., Baptiste, K.E., Catry, B., van Duijkeren, E., et al. (2017). Public health risk of antimicrobial resistance transfer from companion animals. J Antimicrob Chemother. 72(4): 957-968.PMid:279990662.
1
https://doi.org/10.1093/jac/dkw481
Lord, J., Millis, N., Jones, R.D., Johnson, B., Kania, S.A., Odoi, A. (2022). Patterns of antimicrobial, multidrug and methicillin resistance among Staphylococcus spp. isolated from canine specimens submitted to a diagnostic laboratory in Tennessee, USA: a descriptive study. BMC Vet Res. 18, 91. PMid:35255907 PMCid:PMC8903740
2
https://doi.org/10.1186/s12917-022-03185-9
Sweeney, M.T., Lubbers, B.V., Schwarz, S., Watts, J.L. (2018). Applying definitions for multidrug resistance, extensive drug resistance and pandrug resistance to clinically significant livestock and companion animal bacterial pathogens. J Antimicrob Chemother. 73(6): 1460-1463.PMid:29481657
3
https://doi.org/10.1093/jac/dky043
Marco-Fuertes, A., Marin, C., Gimeno-Cardona, C., Artal-Muñoz, V., Vega, S., Montoro-Dasi, L. (2024). Multidrug-resistant commensal and infection-causing Staphylococcus spp. isolated from companion animals in the Valencia region. Vet Sci. 11(2): 54. PMid:38393072 PMCid:PMC10891909
4
https://doi.org/10.3390/vetsci11020054
Nielsen, S.S., Bicout, D.J., Calistri, P., Canali, E., Drewe, J.A., Garin-Bastuji, B., et al. (2021). Assessment of animal diseases caused by bacteria resistant to antimicrobials: dogs and cats. EFSA J. 19(6): e06680. PMid:34194578 PMCid:PMC8237238
5
https://doi.org/10.2903/j.efsa.2021.6680
Bertelloni, F., Cagnoli, G., Ebani, V.V. (2021). Virulence and antimicrobial resistance in canine Staphylococcus spp. isolates. Microorganisms 9(3): 515. PMid:33801518 PMCid:PMC7998746
6
https://doi.org/10.3390/microorganisms9030515
Wu, M.T., Burnham, C.A.D., Westblade, L.F., Bard, J.D., Lawhon, S.D., Wallace, M.A., et al. (2016). Evaluation of oxacillin and cefoxitin disk and MIC breakpoints for prediction of methicillin resistance in human and veterinary isolates of Staphylococcus intermedius group. J Clin Microbiol. 54(3): 535-542. PMid:26607988 PMCid:PMC4767974
7
https://doi.org/10.1128/JCM.02864-15
Adiguzel, M.C., Schaefer, K., Rodriguez, T., Ortiz, J., Sahin, O. (2022). Prevalence, mechanism, genetic diversity, and cross-resistance patterns of methicillin-resistant Staphylococcus isolated from companion animal clinical samples submitted to a veterinary diagnostic laboratory in the Midwestern United States. Antibiotics 11(5): 609. PMid:35625253 PMCid:PMC9138002
8
https://doi.org/10.3390/antibiotics11050609
Mader, R., Muñoz Madero, C., Aasmäe, B., Bourély, C., Broens, E.M., Busani, L., et al. (2022). Review and analysis of national monitoring systems for antimicrobial resistance in animal bacterial pathogens in Europe: A basis for the development of the European Antimicrobial Resistance Surveillance Network in Veterinary Medicine (EARS-Vet). Front Microbiol. 13, 838490. PMid:35464909 PMCid:PMC9023068
9
https://doi.org/10.3389/fmicb.2022.838490
Allerton, F., Prior, C., Bagcigil, A.F., Broens, E., Callens, B., Damborg, P, et al. (2021). Overview and evaluation of existing guidelines for rational antimicrobial use in small-animal veterinary practice in Europe. Antibiotics 10(4): 409. PMid:33918617 PMCid:PMC8069046
10
https://doi.org/10.3390/antibiotics10040409
Cvetkovikj, I., Shikoska, I., Prodanov, M., Rashikj, L. (2022). Antimicrobial resistance in Staphylococci isolated from dogs in the Republic of North Macedonia. Days of Vet Med. September, 22-25, (p. 48), Ohrid, North Macedonia
11
CLSI. (2024). Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals, 6th ed. CLSI standard VET01. CLSI.
12
CLSI. (2024). Performance standards for antimicrobial susceptibility testing, 34th ed. CLSI supplement M100. CLSI.
13
Cuny, C., Layer, F., Strommenger, B., Witte, W. (2011). Rare occurrence of methicillin-resistant Staphylococcus aureus CC130 with a novel mecA homologue in humans in Germany. PLoS One 6(9): e24360. PMid:21931689 PMCid:PMC3169590
14
https://doi.org/10.1371/journal.pone.0024360
Kang, M.H., Chae, M.J., Yoon, J.W., Kim, S.G., Lee, S.Y., Yoo, J.H., et al. (2014). Antibiotic resistance and molecular characterization of ophthalmic Staphylococcus pseudintermedius isolates from dogs. J Vet Sci. 15(3): 409-415. PMid:24690601 PMCid:PMC4178142
15
https://doi.org/10.4142/jvs.2014.15.3.409
Prošić, I., Milčić-Matić, N., Milić, N., Radalj, A., Aksentijević, K., Ilić, M., et al. (2024). Molecular prevalence of mecA and mecC genes in coagulase-positive staphylococci isolated from dogs with dermatitis and otitis in Belgrade, Serbia: A one-year study. Acta Vet. 74(1): 117-132.
16
https://doi.org/10.2478/acve-2024-0009
Maksimović, Z., Dizdarević, J., Babić, S., Rifatbegović, M. (2021). Antimicrobial resistance in coagulase-positive Staphylococci isolated from various animals in Bosnia and Herzegovina. Microb Drug Resist. 28(1): 136-142. PMid:34860586
17
https://doi.org/10.1089/mdr.2021.0160
Matanović, K., Mekić, S., Šeol, B. (2012). Antimicrobial susceptibility of Staphylococcus pseudintermedius isolated from dogs and cats in Croatia during a six-month period. Vet Arh. 82(5): 505-517.
18
Dinkova, V., Rusenova, N. (2024). A retrospective study on the prevalence and antimicrobial resistance of isolates from canine clinical samples submitted to the University Veterinary Hospital in Stara Zagora, Bulgaria. Microorganisms 12(8): 1670. PMCid:PMC11356874 PMid:39203512
19
https://doi.org/10.3390/microorganisms12081670
Dégi, J., Morariu, S., Simiz, F., Herman, V., Beteg, F., Dégi, D.M. (2024). Future challenge: Assessing the antibiotic susceptibility patterns of Staphylococcus species isolated from canine otitis externa cases in Western Romania. Antibiotics 13(12): 1162. PMid:39766552 PMCid:PMC11672840
20
https://doi.org/10.3390/antibiotics13121162
Koritnik, T., Cvetkovikj, I., Zendri, F., Blum, S.E., Chaintoutis, S.C., Kopp, P.A., et al. (2024). Towards harmonized laboratory methodologies in veterinary clinical bacteriology: outcomes of a European survey. Front Microbiol. 15. PMid:39450288 PMCid:PMC11499178
21
https://doi.org/10.3389/fmicb.2024.1443755
Alexander, J.A., Worrall, L.J., Hu, J., Vuckovic, M., Satishkumar, N., Poon, R., et al. (2023). Structural basis of broad-spectrum β-lactam resistance in Staphylococcus aureus. Nature 613, 375-382. PMid:36599987 PMCid:PMC9834060
22
https://doi.org/10.1038/s41586-022-05583-3
Wegener, A., Damborg, P., Guardabassi, L., Moodley, A., Mughini-Gras, L., Duim, B., et al. (2020). Specific staphylococcal cassette chromosome mec (SCCmec) types and clonal complexes are associated with low-level amoxicillin/clavulanic acid and cefalotin resistance in methicillin-resistant Staphylococcus pseudintermedius. J Antimicrob Chemother. 75(3): 508-511. PMid:31846043 PMCid:PMC9297311
23
https://doi.org/10.1093/jac/dkz509
Nomura, R., Nakaminami, H., Takasao, K., Muramatsu, S., Kato, Y., Wajima, T., et al. (2020). A class A β-lactamase produced by borderline oxacillin-resistant Staphylococcus aureus hydrolyses oxacillin. J Glob Antimicrob Resist. 22, 244-247.PMid:32200127
24
https://doi.org/10.1016/j.jgar.2020.03.002
Arêde, P., Ministro, J., Oliveira, D.C. (2013). Redefining the role of the β-lactamase locus in methicillin-resistant Staphylococcus aureus: β-lactamase regulators disrupt the mec-mediated strong repression on mecA and optimize the phenotypic expression of resistance in strains with constitutive mecA. Antimicrob Agents Chemother. 57(7): 3037-3045. PMid:23587945 PMCid:PMC3697340
25
https://doi.org/10.1128/AAC.02621-12
Moodley, A., Damborg, P., Nielsen, S.S. (2014). Antimicrobial resistance in methicillin-susceptible and methicillin-resistant Staphylococcus pseudintermedius of canine origin: Literature review from 1980 to 2013. Vet Microbiol. 171(3-4): 337-341.PMid:24613081
26
https://doi.org/10.1016/j.vetmic.2014.02.008
Morais, C., Costa, S.S., Leal, M., Ramos, B., Andrade, M., Ferreira, C, et al. (2023). Genetic diversity and antimicrobial resistance profiles of Staphylococcus pseudintermedius associated with skin and soft-tissue infections in companion animals in Lisbon, Portugal. Front Microbiol. 14, 1167834. PMid:37138637 PMCid:PMC10149759
27
https://doi.org/10.3389/fmicb.2023.1167834
Feuer, L., Frenzer, S.K., Merle, R., Bäumer, W., Lübke-Becker, A., Klein, B., et al. (2024). Comparative analysis of methicillin-resistant Staphylococcus pseudintermedius prevalence and resistance patterns in canine and feline clinical samples: Insights from a three-year study in Germany. Antibiotics 13(7): 660. PMid:39061342 PMCid:PMC11273960
28
https://doi.org/10.3390/antibiotics13070660
EMA/CVMP/CHMP. (2019). Categorisation of antibiotics in the European Union. Eur Med Agence. 1-73.
29
Menandro, M.L., Dotto, G., Mondin, A., Martini, M., Ceglie, L., Pasotto, D. (2019). Prevalence and characterization of methicillin-resistant Staphylococcus pseudintermedius from symptomatic companion animals in Northern Italy: Clonal diversity and novel sequence types. Comp Immunol Microbiol Infect Dis. 66, 101331.PMid:31437680
30
https://doi.org/10.1016/j.cimid.2019.101331
Shikoska, I., Cvetkovikj, A., Nikolovski, M., Cvetkovikj, I. (2024). Understanding antimicrobial prescription practices: Insights from small animal veterinarians in North Macedonia. Mac Vet Rev. 47(2): 103-114.
31
https://doi.org/10.2478/macvetrev-2024-0020
Food and Veterinary Agency of Republic of North Macedonia, List of veterinary medicinal products that have a marketing authorization, i.e. for which the approval has been cancelled, i.e. for which a change has been made during the validity of the authorization, Official Gazette of Republic of North Macedonia No. 111/2024 [in Macedonian].
32
van Damme, C.M.M., Broens, E.M., Auxilia, S.T., Schlotter, Y.M. (2020). Clindamycin resistance of skin-derived Staphylococcus pseudintermedius is higher in dogs with a history of antimicrobial therapy. Vet Dermatol. 31(4): 305-e75. PMid:32323363 PMCid:PMC7496164
33
https://doi.org/10.1111/vde.12854