Original Scientific Article
MONITORING HEAVY METALS, MYCOTOXINS, COCCIDIOSTATS AND MICROBIAL CONTAMINATION IN ANIMAL FEED: A NORTH MACEDONIA STUDY (2018-2022)
Feed contamination can occur at every stage of the feed chain, including manufacturing, storage, transport, and utilization. Ensuring feed safety is fundamental for livestock health, animal performance, and food safety throughout the feed-to-food chain. The study aimed to make qualitative and quantitative assessment of microbiological and chemical hazards in animal feed in North Macedonia from 2018 to 2022. A total of 1,629 feed samples were analysed for heavy metals, mycotoxins, and coccidiostats, whereas 598 samples were examined for microbial contamination. The results indicate a significant prevalence of heavy metals, with lead (Pb) detected in 100% of the samples, although mostly within regulatory limits. Mycotoxins, notably ochratoxin A (OTA) and aflatoxin B1 (AFB1 ), were also identified, with non-compliance in 10.88% of cattle feed for AFB1 . Coccidiostat residues exceeded the maximum levels in 4.6% of the samples. Microbiological analysis revealed that 1.34% of feed samples were contaminated with Salmonella spp., and 3.8% tested positive for sulphitereducing clostridia. The findings on both microbiological and chemical hazards indicate their potential to threaten the feed safety chain. Accordingly, this study emphasizes the need for continuous comprehensive feed safety monitoring and the enforcement of stringent safety regulations to safeguard animal and public health in North Macedonia.
https://macvetrev.mk/LoadArticlePdf/413
2025-06-10
i
xv
https://doi.org/10.2478/macvetrev-2025-0023
feed safety
contaminants
coccidiostats
microbiological hazards
North Macedonia
Elizabeta
Dimitrieska Stojkovikj
false
1
Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, North Macedonia
AUTHOR
Biljana
Stojanovska Dimzoska
false
1
Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, North Macedonia
AUTHOR
Vangelica
Enimiteva
false
1
Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, North Macedonia
AUTHOR
Ljupco
Angelovski
false
1
Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, North Macedonia
AUTHOR
Zehra
Hajrulai Musliu
false
1
Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, North Macedonia
AUTHOR
Gordana
Ilievska
false
1
Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, North Macedonia
AUTHOR
Dushica
Koceva
false
1
Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, North Macedonia
AUTHOR
Aleksandra
Angeleska
false
1
Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, North Macedonia
AUTHOR
Sandra
Mojsova
false
1
Faculty of Veterinary Medicine-Skopje, Ss. Cyril and Methodius University in Skopje, Lazar Pop Trajkov 5-7, 1000 Skopje, North Macedonia
AUTHOR
Sharma, V., Sharma, S., Datt, C. (2015). Potential hazards in animal feeds: safety and regulatory review. Indian J Anim Nutr. 32(3): 242-262.
1
Dorne, JLC, Mand Fink-Gremmels, J. (2013). Human and animal health risk assessment of chemicals in the food chain: comparative aspects and future perspectives. Toxicol Appl Pharmacol. 270(3): 187-195. PMid:22484160
2
https://doi.org/10.1016/j.taap.2012.03.013
D'Mello, JPF (2004). Microbiology of animal feeds assessing quality and safety of animal feeds, FAO, Rome, pp. 89 ̶105.
3
Radovanov-Pelagić, V., Jurić, V., Kunc, V., Ristić, M., Koljajić, V. (1999). Relationship between microflora and amount of mycotoxins in animal feed. Contemporary Agriculture, Novi Sad, 48(1-2): 281-284. [In Serbian]
4
Hinton, M. (1993). Spoilage and pathogenic microorganisms in animal feed. Int Biodeterior Biodegrad. 32(1-3): 67-74.
5
https://doi.org/10.1016/0964-8305(93)90040-9
Ricke, SC (2018). Chapter. 8. Feed Hygiene. In: J. Dewulf, F. Van Immerseel (Eds.), Biosecurity in animal production and veterinary medicine from principles to practice (pp. 177-209). Leuven, Belgium: ACCO (Academische Coöperative Vennootschap cvba)
6
https://doi.org/10.1079/9781789245684.0177
Đorđević, N., Dinić, B. (2007). Animal Feed. Cenzone tech-Europe, Aranđelovac [In Serbian]
7
WHO [World Health Organization]. (2020). Compendium of WHO and other UN guidance on health and environment. Chapter 5. Chemicals. c2023 [cited 2023 October 31]. https://cdn.who.int/media/docs/default-source/who-compendiumon-health-and-environment/who_compendium_chapter5_01092021.pdf?sfvrsn=20ca418_5
8
Wu, X., Cobbina, SJ, Mao, G., Xu, H., Zhang, Z., Yang, L. (2016). A review of toxicity and mechanisms of individual and mixtures of heavy metals in the environment. Environ Sci Pollut Res. 23(9): 8244-8259. PMid:26965280
9
https://doi.org/10.1007/s11356-016-6333-x
Kim, JH (2023). Determination of safe levels and toxic levels for feed hazardous materials in broiler chickens: a review. J Anim Sci Technol. 65(3): 490-510. PMid:37332288 PMCid:PMC10271926
10
https://doi.org/10.5187/jast.2023.e26
EFSA Panel on Contaminants in the Food Chain (CONTAM). (2012). Scientific opinion on the risk for public health related to the presence of methylmercury and mercury in food. EFSA J. 10(12): 2985.
11
https://doi.org/10.2903/j.efsa.2012.2985
Kos, J., Anić, M., Radić, B., Zadravec M., Janić Hajnal, E., Pleadin, J. (2023). Climate change-a global threat resulting in increasing mycotoxin occurrence. Foods 12(14): 2704. PMid:37509796 PMCid:PMC10379110
12
https://doi.org/10.3390/foods12142704
Muñoz-Solano, B., Gonzáles-Peñas, E. (2023). Co-occurrence of mycotoxins in feed for cattle, pigs, poultry, and sheep in Navara, a region of Northern Spain. Toxins (Basel). 15(3): 172. PMid:36977063 PMCid:PMC10057204
13
https://doi.org/10.3390/toxins15030172
Leggieri, MC, Toscano, P., Battilani, P. (2021). Predicted aflatoxin B1 increase in Europe due to climate change: actions and reactions at global level. Toxins 13(4): 292. PMid:33924246 PMCid:PMC8074758
14
https://doi.org/10.3390/toxins13040292
Dimitrieska-Stojković, E., Stojanovska-Dimzoska, B., Ilievska, G., Uzunov, R., Stojković, G., Hajrulai-Musliu, Z., Jankuloski D. (2016), Assessment of aflatoxin contamination in raw milk and feed in Macedonia During 2013. Food Control. 59, 201-206.
15
https://doi.org/10.1016/j.foodcont.2015.05.019
Ilievska, G., Stojanovska-Dimzoska, B., Koceva, D., Stojković, G., Angeleska, A., Dimitrieska-Stojković, E. (2022). Dietary exposure and health risk assessment of aflatoxin M1 in dairy products consumed by the population of North Macedonia, J Food Qual Hazards Control. 9(1): 14-22.
16
https://doi.org/10.18502/jfqhc.9.1.9686
Pleadin, J., Lešić, T., Milićević D., Markov, K., Šarkanj, B., Vahčić, N., Kmetič, I., Zadravec, M. (2021). Pathways of mycotoxin occurrence in meat products: a review. Processes 9(12): 2122.
17
https://doi.org/10.3390/pr9122122
Pleadin, J., Jadrić, M., Kudumija, N., Zadravec, M., Kiš, G., Mihaljević, Ž., Škrivanko, M., Samardžija, M. (2024). Zearalenone in feed, urine and meat from three pig farms in Croatia. Vet Stanica 55(1): 1-11.
18
https://doi.org/10.46419/vs.55.1.10
Roila, R., Branciari, R., Pecorelli, I., Cristofani, E., Carloni, C., Ranucci, D., Fioroni, L. (2019). Occurrence and residues concentration of coccidiostats in feed and food of animal origin; Human exposure assessment. Foods 8(10): 447. PMid:31614486 PMCid:PMC6835225
19
https://doi.org/10.3390/foods8100477
Dorne, JLCM, Fernández-Cruz, ML, Bertelsen, U., Renshaw, DW, Peltonen, K., Anadon, A., Feil, A., Sanders, P., Wester, P., Fink-Gremmels, J. (2013). Risk assessment of coccidiostats during feed cross contamination: Animal and human health aspects. Toxicol Appl Pharmacol. 270(3): 196-208. PMid:21215766
20
https://doi.org/10.1016/j.taap.2010.12.014
Clarke, L., Fodey, TL, Crooks, SRH, Moloney, M., O'Mahony, J., Delahaut, P., O'Kennedy, R., Danaher, M. (2014). A review of coccidiostats and the analysis of their residues in meat and other food. Meat Sci. 97(3): 358-374. PMid:24534603
21
https://doi.org/10.1016/j.meatsci.2014.01.004
Rulebook for the list of undesirable substances in animal food and maximum permitted level as well as critical points for conducting source identification research and the reasons for exceeding the maximum permitted level, Official Journal of RNM No. 85 from 31.03.2020.
22
Rulebook for general and specific requirements for feed safety, Official Journal of RM No. 147 from 27.11.2012. 24. ISO 4833-1:2013 Microbiology of the food chain - Horizontal method for the enumeration of microorganisms Part 1: Colony count at 30 °C by the pour plate technique. https://www.iso.org/standard/53728.html
23
ISO 4833-1:2013 Microbiology of the food chain - Horizontal method for the enumeration of microorganisms Part 1: Colony count at 30 °C by the pour plate technique. https://www.iso.org/standard/53728.html
24
ISO 21527-2:2008 Microbiology of food and animal feeding stuffs - Horizontal method for the enumeration of yeasts and molds - Part 2: Colony count technique in products with water activity less than or equal to 0.95. https://www.iso.org/standard/38276.html
25
ISO 15213:2003 Microbiology of the food chain - Horizontal method for the detection and enumeration of Clostridium spp. - Part 1: Enumeration of sulfite-reducing Clostridium spp. by colony-count technique. https://www.iso.org/standard/26852.html
26
ISO 6579-1:2017 Microbiology of the food chain - Horizontal method for the detection, enumeration and serotyping of Salmonella - Part 1: Detection of Salmonella spp. https://www.iso.org/standard/56712.html
27
International Organization for Standardization (1999). ISO 6496:1999 - Animal feeding stuffs - Determination of moisture and other volatile matter content. https://www.iso.org/standard/12871.html
28
CEN 2003, EN 14084, Foodstuffs - Determination of trace elements - Determination of lead, cadmium, zinc, copper and iron by atomic absorption spectrometry (AAS) after microwave digestion, European Committee for Standardization, 2003. https://standards.iteh.ai/catalog/standards/cen/446d0bd2-4c65-4d15-a586-852f4a653f70/en-14084-2003?srsltid=AfmBOooMj_Dd74K3FwTQ2dZpTyc3YFpbQBYrSf7oxKgSCl3BvXx6EhiK
29
CEN 2002, EN 13086, Foodstuffs - Determination of trace elements - Determination of mercury by cold vapor atomic absorption spectrometry (CVAAS) after pressure digestion, European Committee for Standardization, 2002. https://standards.iteh.ai/catalog/standards/cen/a62f2c3c-cbea-4861-830f-448c7d80ae75/en-13806-2002?srsltid=AfmBOoo38ECsJEEJwAKvNH8lQvcUwdQbaLTTmIplEaYXLkAZj88ot6H4
30
Stojanovska-Dimzoska, B., Hajrulai-Musliu, Z., Uzunov, R., Angeleska, A., Blagoevska, K., Crceva Nikolovska, R., Ilievska, G., Dimitrieska-Stojkovikj, E. (2022). Study on the effectiveness of a multi-toxin immunoaffinity cleanup for reliable cost-effective HPLC-FLD analysis of mycotoxins in corn based food. Maced J Chem Chem Eng. 41(1): 77-88.
31
https://doi.org/10.20450/mjcce.2022.2422
Waters Corporation (2013). The analysis of coccidiostatic agents in feed using the ACQUITY UPLC I-class and XEVO TQ-S, application note 720004769en, August 2013. c2013 [cited 2019 December 27]. https://www.waters.com/waters/library.htm?cid=10160596&lid=134757454
32
Elliott, S., Frio, A., Jarman T. (2017). Heavy metal contamination of animal feedstuffs - a new survey. J Appl Anim Nutr. 5(8): 1-15.
33
https://doi.org/10.1017/jan.2017.7
Iqbal, H., Shafique, MA, Khan, MJ (2023). Evaluation of heavy metals concentration in poultry feed and poultry products. Saudi J Med Pharm Sci. 9(7): 489-495.
34
https://doi.org/10.36348/sjmps.2023.v09i07.019
Korish, MA, Attia, YA (2020). Evaluation of heavy metal content in feed, litter, meat, meat products, liver and table eggs. Animals 10(4): 727. PMid:32331361 PMCid:PMC7222721
35
https://doi.org/10.3390/ani10040727
Hejna, M., Moscatelli, A., Onelli, E., Baldi, A., Pilu, S., Rossi, L. (2019). Evaluation of concentration of heavy metals in animal rearing system. Ital J Anim Sci. 18(1): 1372-1384.
36
https://doi.org/10.1080/1828051X.2019.1642806
Wang, H., Dong, Y., Yang, YS, Toor, G., Zhang, X. (2013). Changes in heavy metal contents in animal feeds and manures in an intensive animal production region of China. J Environ Sci. 25(12): 2435-2442. PMid:24649675
37
https://doi.org/10.1016/S1001-0742(13)60473-8
Adamse, P., Van der Fels-Klerx, HJ, de Jong, J. (2017). Cadmium, lead, mercury and arsenic in animal feed and feed materials - trend analysis of monitoring results. Food Addit Contam: Part A. 34(8): 1298-1311. PMid:28278122
38
https://doi.org/10.1080/19440049.2017.1300686
Zhang, F., Li, Y., Yang, M., Li, W. (2012). Content of heavy metals in animal feeds and manures from farms of different scales in northeast China. Int J Environ Res Publ. Health. 9(8): 2658-2668. PMid:23066389 PMCid:PMC3447579
39
https://doi.org/10.3390/ijerph9082658
Sdogati, S., Pacini, T., Bibi, R., Caporali, A., Vardini, E., Orsini, S., Ortenzi, R., Pecorelli, I. (2024). Co-occurrence of aflatoxin B1, zearalenone and ochratoxin A in feed and feed materials in Central Italy from 2018-2022. Foods 13(2): 313. PMid:38254614 PMCid:PMC10815256
40
https://doi.org/10.3390/foods13020313
Santos Pereira, C., Cunha, SC, Fernandes, JO (2019). Prevalent mycotoxins in animal feed: occurrence and analytical methods. Toxins 11(5): 290. PMid:31121952 PMCid:PMC6563184
41
https://doi.org/10.3390/toxins11050290
Pietruk, K., Olejnik, M., Jedziniak, P., Szprengier-Juszkiewicz, T. (2015). Determination of fifteen coccidiostats in feed at carry-over levels using liquid chromatography-mass spectrometry. J Pharm Biomed Anal. 112, 50-59. PMid:25958138
42
https://doi.org/10.1016/j.jpba.2015.03.019
Delahaut, P., Pierret, G., Ralet, N., Dubois, M., Gillard, N. (2010). Multi-residue method for detecting coccidiostats at carry-over level in feed by HPLC-MS/MS. Food Addit Contam A Chem Anal Control Expo Risk Assess. 27(6): 801-809. PMid:20198524
43
https://doi.org/10.1080/19440040903552408
Annunziata, L., Visciano, P., Stramenga, A., Colagrande, MN, Campana, G., Scortichini, G., Migliorati, G., Compagnone, D. (2017). Determination of regulatory ionophore coccidiostat residues in feedstuffs at carry-over levels by liquid chromatography-mass spectrometry. PLoS ONE. 12(8): e0182831. PMid:28792977 PMCid:PMC5549955
44
https://doi.org/10.1371/journal.pone.0182831
Moretti, S., Fioroni, L., Giusepponi, D., Pettinacci, L., Saluti, G., Galarini, R. (2013). Development and validation of a multiresidue liquid chromatography/tandem mass spectrometry method for 11 coccidiostats in feed. J. AOAC Int. 96(6): 1245-1257. PMid:24645501
45
https://doi.org/10.5740/jaoacint.12-440
Wojdat, E., Kwiatek, K., Kozak, M. (2005). Microbiological quality of animal feeding stuffs in Poland. Bull Vet Inst Pulawy. 49(3): 315-318.
46
Čabarkapa, I., Kokić, B., Plavšić, D., Ivanov, D., Lević, J. (2009). Microbiological safety of animal feed. Biotechnol Anim Husb. 25(5-6): 1155-1162.
47
Maciorowski, KG, Herrera, P., Jones, FT, Pillai, SD, Ricke, SC (2007). Effects on poultry and livestock of feed contamination with bacteria and fungi. Anim Feed Sci Technol. 133(1): 109-136.
48
https://doi.org/10.1016/j.anifeedsci.2006.08.006
Udhayavel, S., Gopalakrishnamurthy, TR, Vasudevan, G., Shanmugasamy, M., Kandasamy, S. (2017). Occurrence of Clostridium Perfringens contamination in poultry feed ingredients: isolation, identification and its antibiotic sensitivity pattern. Anim Nutr. 3(3): 309-312. PMid:29767074 PMCid:PMC5941237
49
https://doi.org/10.1016/j.aninu.2017.05.006
Sapkota, AR, Lefferts, LY, McKenzie, S., Walker, P. (2007). What do we feed to food-producing animals? A review of animal feed ingredients and their potential impacts on human health. Environ Health Persp. 115(5): 663-670. PMid:17520050 PMCid:PMC1867957
50
https://doi.org/10.1289/ehp.9760
Kukier, E., Goldsztejn, M., Grenda, T., Krzysztof, K., Wasyl, D., Hoszowski, A. (2012). Microbiological quality of compound feed used in Poland. J Vet Res. 56(3): 349-354.
51
https://doi.org/10.2478/v10213-012-0061-x
Liebana, E., Hugas, M. (2012). 5-Assessment of the microbiological risks in feedingstuffs for food-producing animals. In J. Fink-Gremmels (Ed.), Woodhead Publishing Series in Food Science, Technology and Nutrition, Animal Feed Contamination (pp. 66-93). Woodhead Publishing
52
https://doi.org/10.1533/9780857093615.1.66
Jones, FT (2011). A review of practical Salmonella control measures in animal feed. J Appl Poult Res. 20(1): 102-113.
53
https://doi.org/10.3382/japr.2010-00281
Vestby, LK, Møretrø, T., Langsrud, S., Heir, E., Nesse, LL (2009). Biofilm forming abilities of Salmonella are correlated with persistence in fish meal-and feed factories. BMC Vet Res. 5, 20. PMid:19473515 PMCid:PMC2693496
54
https://doi.org/10.1186/1746-6148-5-20