Original Scientific Article
Occurrence and antibiogram of generic extended spectrum Cephalosporin-resistant and extended-spectrum Β-Lactamase-producing Enterobacteria in horses
Madubuike Umunna Anyanwu * ,
Ifeoma Chinyere Ugwu ,
Collins Uchenna Onah

Mac Vet Rev 2018; 41 (2): 123 - 132

10.2478/macvetrev-2018-0015

Received: 30 October 2017

Received in revised form: 04 April 2018

Accepted: 30 April 2018

Available Online First: 31 May 2018

Published on: 15 October 2018

Correspondence: Madubuike Umunna Anyanwu, madubuike.anyanwu@unn.edu.ng
PDF HTML

Abstract

This study was conducted to isolate generic extended-spectrum cephalosporin (ESC)-resistant and extended-spectrum β-lactamase (ESBL)-producing enterobacteria from horses in Nigeria, and to determine the antibacterial resistance profile. Rectal swabs were collected from 155, systematic randomly selected, apparently-healthy horses. Isolation of ESC-resistant enterobacteria was done using Mac Conkey agar with ceftazidime. ESBL production was assessed by combination disc method. Resistance of the isolates was determined using disc diffusion method. Out of 155 samples, 5.2% gave positive growth. From these, 11 ESC-resistant enterobacteria comprising of 36.4% E. coli, 36.4% Salmonella spp. and 27.2% Proteus spp., were obtained. From 11 isolates, 45.5% consisting of all the 4 E. coli and 1 Proteus isolates, were ESBL-producers, these were recovered from 4 (2.6%) out of the 155 horses sampled. Resistance of the E. coli isolates was 25% to aztreonam (AZT), 75% to amoxicillin-clavulanic acid (AMC), gentamicin (GEN), perfloxacin (PEF), and sulphamethoxazoletrimethoprim (SXT-TRI), 50% to ofloxacin (OFL) and 100% to ampicillin (AMP), ceftazidime (CTZ), cefotaxime (CTX), chloramphenicol (CHL), streptomycin (STR), tetracycline (TET), sparfloxacin (SPA), ciprofloxacin (CIP), norfloxacin (NOR) and enrofloxacin (ENR). Resistance of the Salmonella isolates was 50% to PEF and 100% to CTZ, CTX, AMP, AZT, AMC, CHL, GEN, STR, TET, SPA, CIP, OFL, NOR and ENR. Resistance of the Proteus isolates was 25% to AMC, CHL, STR, TET, SPA and NOR, and 100% to CTZ, CTX, AZT and AMP. Resistance of the isolates to more than 3 classes of antibacterial agents tested was 75% for Proteus and 100% for E. coli and Salmonella, respectively. This study showed that horses in Nigeria are potential reservoirs and disseminators of ESC-resistant and ESBL-producing Enterobacteriaceae.

Keywords: antibiogram, extended-spectrum cephalosporin-resistant, extended-spectrum β-lactamase-producing, Enterobactericeae, equine


References

1. Huber, H., Zweifel, C., Wittenbrink, M.M., Roger, S. (2013). ESBL-producing uropathogenic Escherichia coli isolated from dogs and cats in Switzerland. Vet Microbiol. 162, 992-996. https://doi.org/10.1016/j.vetmic.2012.10.029 PMid:23177909
2. Apostolakos, I., Franz, E., van Hoek, A.H.A.M., Florijn, A., Veenman, C., Sloet-van Oldruitenborgh-Oosterbaan, M.M., Dierikx, C., van Duijkeren, E. (2017). Occurrence and molecular characteristics of ESBL/AmpC-producing Escherichia coli in faecal samples from horses in an equine clinic. J Antimicrob Chemother. 72 (7):1915-1921. https://doi.org/10.1093/jac/dkx072 PMid:28333298
3. World Health Organization (WHO) (2017). Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics http://www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf
4. Dierikx, C.M., van Duijkeren, E., Schoormans, A.H., van Essen-Zandbergen, A., Veldman, K., Kant A., Huijsdens XW., van der Zwaluw K., Wagenaar JA., Mevius DJ. (2012). Occurrence and characteristics of extended-spectrum-β-lactamase- and AmpC-producing clinical isolates derived from companion animals and horses. J Antimicrob Chemother. 67(6):1368-1374. https://doi.org/10.1093/jac/dks049 PMid:22382469
5. Olusa, T.A.O., Adegunwa, A.K., Aderonmu, A.A., Adeyefa, C.A.O. (2010). Serologic evidence of equine H7 influenza virus in polo horses in Nigeria. Sci World J. 5(2):17-19. https://doi.org/10.4314/swj.v5i2.61509
6. Turaki, U.A., Kumsha, H.A., Biu, A.A., Bokko, P.B. (2014). Prevalence of piroplasmosis amongst local horses in Northeastern Nigeria. IOSR J Agric Vet Sci. 7(12):4-7.
7. Ehizibolo, D.O., Kamani, J., Eizibolo, P.O., Egwu, K.O., Dogo, G.I., Salami-Shinaba, J.O. (2012). Prevalence and significance of parasites of horses in some states of Northern Nigeria. J Equine Sci. 23(1):1-4. https://doi.org/10.1294/jes.23.1 PMid:24833991 PMCid:PMC4013976
8. Ardo, B., Abubakar, D.M. (2016). Seroprevalence of horse (Equus caballus) brucellosis on the Mambilla plateau of Taraba State, Nigeria. J Equine Sci. 27(1):1-6. https://doi.org/10.1294/jes.27.1 PMid:27073329 PMCid:PMC4828245
9. Sule, WF, Oluwayelu, D.O., Adedokun, R.A.M., Rufai, N., McCracken, F., Mansfield, K.L., Johnson, N. (2015). High seroprevelance of West Nile Virus antibodies observed in horses from Southwestern Nigeria. Vec Borne Zoonot Dis. 15(3):218-220. https://doi.org/10.1089/vbz.2014.1706 PMid:25793479 PMCid:PMC4369928
10. Agina, O.A., Ihedioha, J.I., Anyanwu, M.U., Ngwu, M.I. (2016). Clinicopathological and microbiological findings associated with wounds in Nigerian horses. Comp Clin Pathol. 26 (1):181-188.
11. Agina, O.A., Ihedioha, J.I. (2017). Occurrence of wounds in Nigerian horses. J Appl Anim Welf. Sci. https://doi.org/10.1080/1088∁.2017.1343149 PMid:28696771
12. Alonso, C.A., Zarazaga, M., Ben Sallem, R., Jouini, A., Ben Slama, K., Torres, C. (2017). Antibiotic resistance in Escherichia coli in animal husbandry:the African perspective. Lett Appl Microbiol. 64, 318-334. https://doi.org/10.1111/lam.12724 PMid:28208218
13. Ugwu, I.C., Anyanwu, M.U., Ugwu, C.C., Ugwuanyi, O.W. (2015). Prevalence and antibiogram of generic extended-spectrum β-lactam-resistant enterobacteria in healthy pigs. Not Sci Biol. 7(3):273-280. https://doi.org/10.15835/nsb.7.3.9616
14. Huijbers, P.M., de Kraker, M., Graat, E.A., van Hoek, A.H., van Santen, M.G., de Jong, M.C., van Duijkeren, E., de Greeff, S.C. (2013). Prevalence of extended-spectrum β-lactamase-producing Enterobacteriaceae in humans living in municipalities with high and low broiler density. Clin Microbiol Infect. 19(6):E256-59. https://doi.org/10.1111/1469-0691.12150 PMid:23397953
15. Maddox, T.W., Clegg, P.D., Williams, N.J., Pinchbeck, G.L. (2015). Antimicrobial resistance in bacteria from horses:Epidemiology of antimicrobial resistance. Equine Vet J. 47(6):756-765. https://doi.org/10.1111/evj.12471 PMid:26084443
16. Woerther, P., Burdet, C., Chachaty, E., Andremont, A. (2013). Trends in human fecal carriage of extended-spectrum-β-lactamases in the community:toward the globalization of CTX-M. Clin Microbiol Rev. 26(4):744-758. https://doi.org/10.1128/CMR.00023-13 PMid:24092853 PMCid:PMC3811232
17. Dolejska, M., Duskova, E., Rybarikova, J., Janoszowska, D., Roubalova, E., Dibdakova, K., Maceckova, G., Kohoutova, L., Literak, I., Smola, J., Cizek, A. (2011). Plasmids carrying blaCTX-M-1 and qnr genes in Escherichia coli isolates from an equine clinic and a horseback riding centre. J Antimicrob Chemother 66(4):757-764. https://doi.org/10.1093/jac/dkq500 PMid:21393204
18. Ewers, C., Stamm, I., Pfeifer, Y., Wieler, L.H., Kopp, P.A., et al. (2014). Clonal spread of highly successful ST15-CTX-M-15 Klebsiella pneumoniae in companion animals and horses. J Antimicrob Chemother 69(10):2676-2680. https://doi.org/10.1093/jac/dku217 PMid:24974381
19. Faleke, O.O., Jolayemi, K.O., Igoh, Y.O., Jibril, A.H., Ayedun, J.O. (2017). Salmonella species on meat contact surfaces and processing water in Sokoto main market and abattoir, Nigeria. Mac Vet Rev. 40(1):59-65. https://doi.org/10.1515/macvetrev-2017-0011
20. Johns, I.C., Adams, E.L. (2015). Trends in antimicrobial resistance in equine bacterial isolates:1999-2012. Vet Rec. https://doi.org/10.1136/vr.102708 PMid:25628448
21. World Health Organization (WHO) (2014). Antimicrobial resistance:global report on surveillance. World Health Organization
22. Schmiedel, J., Falgenhauer, L., Domann, E., Bauerfeind, R., Prenger-Berninghoff, E., et al. (2014). Multiresistant extended-spectrum β-lactamase-producing Enterobacteriaceae from humans, companion animals and horses in central Hesse, Germany. BMC Microbiol. 14, 187. https://doi.org/10.1186/1471-2180-14-187 PMid:25014994 PMCid:PMC4105247
23. Vo, A.T., van Duijkeren, E., Fluit, A.C., Gaastra, W. (2007). Characteristics of extended-spectrum cephalosporin-resistant Escherichia coli and Klebsiella pneumoniae isolates from horses. Veterinary Microbiol. 124(3-4):248-255. https://doi.org/10.1016/j.vetmic.2007.04.027 PMid:17521833
24. Smet, A., Boyen, F., Flahou, B., Doublet, B., Praud, K., Martens, A., Butaye, P., Cloeckaert, A., Haesebrouck, F. (2012). Emergence of CTX-M-2-producing Escherichia coli in diseased horses:evidence of genetic exchanges of bla (CTX-M-2) linked to ISCR1. J Antimicrob Chemother. 67(5):1289-1291. https://doi.org/10.1093/jac/dks016 PMid:2232⇀
25. Ewers, C., Bethe, A., Stamm, I., Grobbel, M., Kopp, PA, et al. (2014). CTX-M-15-D-ST648 Escherichia coli from companion animals and horses:another pandemic clone combining multiresistance and extraintestinal virulence?J Antimicrob Chemother. 69(5):1224-1230. https://doi.org/10.1093/jac/dkt516 PMid:24398338
26. van Spijk, J.N, Schmitt, S., Fürst, A.E., Schoster, A. (2016). A retrospective analysis of antimicrobial resistance in bacterial pathogens in an equine hospital (2012-2015). Schweiz Arch Tierheilkd. 158(6):433-442. https://doi.org/10.17236/sat00069 PMid:27504838
27. Maddox, T.W., Clegg, P.D., Diggle, P.J., Wedley, A.L., Dawson, S., Pinchbeck, G.L., Williams, N.J. (2012). Cross-sectional study of antimicrobial-resistant bacteria in horses. Part 1:Prevalence of antimicrobial-resistant Escherichia coli and methicillin-resistant Staphylococcus aureus. Equine Vet J. 44(3):289-296. https://doi.org/10.1111/j.2042-3306.2011.00441.x PMid:21848534
28. Maddox, T.W., Pinchbeck, G.L., Clegg, P.D., Wedley, A.L., Dawson, S., Williams, N.J. (2012). Cross-sectional study of antimicrobial-resistant bacteria in horses. Part 2:Risk factors for faecal carriage of antimicrobial-resistant Escherichia coli in horses. Equine Vet J. 44(3):297-303. https://doi.org/10.1111/j.2042-3306.2011.00440.x PMid:2184⅘
29. Chah, K.F., Oboegbulem, S.I. (2007). Extended spectrum beta-lactamase production among ampicillin-resistant Escherichia coli strains from chicken in Enugu State, Nigeria. Braz J Microbiol. 38, 681-686. https://doi.org/10.1590/S1517-83822007000400018
30. Duru, C., Nwanegbo, E., Adikwu, M., Ejikeugwu, C., Esimone, C. (2013). Extended-spectrum beta-lactamase-producing Escherichia coli strains of poultry origin in Owerri, Nigeria. World J Med Sci. 8(4):349-354.
31. Eze, E., Nwakeze, E., Oji, A., Ejikeugwu, C., Iroha, I. (2013). Microbiological investigation of Escherichia coli isolates from cloacal and feacal swabs of broiler chickens for extended- spectrum beta-lactamase (ESBL) enzymes. J Pharm Biol Sci. 7(5):96-99.
32. Ojo, O.E., Schwarz, S., Michael, G.B. (2016). Detection and characterization of extended-spectrum β-lactamase-producing Escherichia coli from chicken production chains in Nigeria. Vet Microbiol. 194, 62-68. https://doi.org/10.1016/j.vetmic.2016.04.022 PMid:27157499
33. Abubakar, M.B., Salihu, M.D., Aliyu, R.M., Bello, A., Tukur, H., Shuaibu, A.B. (2016). Occurrence and antimicrobial resistance of ESBL-producing Escherichia coli in indigenous chickens and retailed table-eggs in Sokoto metropolis, Nigeria. Schol J Biol Sci. 5(2):56-60
34. Olowe, O.A., Adewumi, O., Odewale, G., Ojurongbe, O., Adefioye, O.J. (2015). Phenotypic and molecular characterization of extended-spectrum beta-lactamase producing Escherichia coli obtained from animal fecal samples in Ado Ekiti, Nigeria. J Env Publ Health
35. Ogefere, H.O., Agbe, S.O., Ibadin, E.E. (2017). Detection of extended-spectrum beta-lactamases among Gram-negative bacilli recovered from cattle faeces in Benin city, Nigeria. Not Sci Biol. 9(2):177-181. https://doi.org/10.15835/nsb9210005
36. Anyanwu, M.U., Ugwu, I.C., Ezekwelu, M.O., Okoroafor, U.N. (2017). Prevalence and antibiogram of generic extended β-lactam-resistant enterobacteria in healthy dogs. Not Sci Biol. 9(1):22-33. https://doi.org/10.15835/nsb919940
37. Cheesebrough, M. (2000). District laboratory practice in tropical countries Part 2. Cambridge University Press;Cambridge, pp. 63-70.
38. Clinical and Laboratory Standards Institute (CLSI) (2014). Performance standards for antimicrobial susceptibility testing;twenty-fourth informational supplement, M100-S24 34(1):61-188.
39. Clinical and Laboratory Standards Institute (CLSI) (2017). Performance standards for antimicrobial susceptibility testing, 27th Edition M100.
40. Walther, B., Lübke-Becker, A., Stamm, I., Gehlen, H., Barton, A.K., Janssen, T., Wieler, L.H., Guenther, S. (2014). Suspected nosocomial infections with multi-drug resistant E. coli, including extended-spectrum beta-lactamase (ESBL)-producing strains, in an equine clinic. Berl Munch Tierarztl Wochenschr. 127(11-12):421-427. PMid:25−51
41. Hagget, E.F. (2014). Antimicrobial use in foal:do we need to change how we think?Equine Vet J. 46, 137-138. https://doi.org/10.1111/evj.12178 PMid:24548374
42. Ahmed, M.O., Clegg, P.D., Williams, N.J., Baptiste, K.E., Bennett, M. (2010). Antimicrobial resistance in equine faecal Escherichia coli isolates from North West England. Ann Clin Microbiol Antimicrob. 9, 12. https://doi.org/10.1186/1476-0711-9-12 PMid:20374640 PMCid:PMC2867969
43. Schaufler, K., Bethe, A., Lubke-Becker, A., Ewers, C., Kohn, B., Wieler, L.H., Guenther, S. (2015). Putative connection between zoonotic multiresistant extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in dog feces from a veterinary campus and clinical isolates from dogs. Infect Ecol Epidemiol. 5, 25334. https://doi.org/10.3402/iee.v5.25334 PMid:25656467 PMCid:PMC4318939
44. Damborg, P., Marskar, P., Baptiste, K.E., Guardabassi, L. (2012). Faecal shedding of CTX-M-producing Escherichia coli in horses receiving broad-spectrum antimicrobial prophylaxis after hospital admission. Vet Microbiol. 154(3-4):298-304. https://doi.org/10.1016/j.vetmic.2011.07.005 PMid:21820821
45. Beceiro, A., Maharjan, S., Gaulton, T., Doumith, M., Soares, N.C., Dhanji, H., et al. (2011). False extended-spectrum {beta}-lactamase phenotype in clinical isolates of Escherichia coli associated with increased expression of OXA-1 or TEM-1 penicillinases and loss of porins. J Antimicrob Chemother. 66, 2006-2010. https://doi.org/10.1093/jac/dkr265 PMid:21742679


Copyright 

©2018 Anyanwu M.U. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Acknowledgement

The authors are grateful to Prof. Kennedy F. Chah for providing the combination discs used in this study.

Conflict of Interest Statement

The authors declared that they have no potential conflict of interest with respect to the authorship and/or publication of this article.

Citation Information

Macedonian Veterinary Review. Volume 41, Issue 2, Pages 123-132, p-ISSN 1409-7621, e-ISSN 1857-7415, DOI: 10.2478/macvetrev-2018-0015, 2018