Original Scientific Article
Different dynamics of sensory-motor development and behavior during the transitional period in puppies: Preliminary results
Federica Pirrone
,
Ludovica Pierantoni
,
Valerio Albizzati
,
Mariangela Albertini
*
Abstract
Many studies have analyzed the behavior of puppies during their socialization period, while little attention has been paid to the transitional period, when vision and hearing develop. Here, we compared the average age of sensory and motor development, and the behavior among a total of 25 puppies. Each litter was videotaped during 1-hour daily sessions on postnatal days 10-21 and coded for the following mutually exclusive behavioral categories: sleeping, suckling and moving. The moving category included side-to-side head swinging, exploring, rolling and allogrooming. The opening of the eyelids, appearance of the startle response and ability to stand up with either the front or hind legs were identified. The duration and frequency of puppy behaviors varied significantly with breed and season of birth. Breed and gender differences in gross motor and sensory development were also observed. These findings may turn out to be crucial to enhance the welfare, standards of rearing, and behavioral interventions aimed at improving adaptability to novel stimuli in pet dogs.
Keywords: behavior, development, transitional period, puppies, dog
References
1. Virués-Ortega, J., Buela-Casal, G. (2006). Psychophysiological effects of human-animal interaction:theoretical issues and long-term interaction effects. J Nerv Ment Dis. 194 (1):52-57.
https://doi.org/10.1097/01.nmd.0000195354.03653.63 PMid:16462556
2. Kubinyi, E., Turcsán, B., Miklósi, Á. (2009). Dog and owner demographic characteristics and dog personality trait associations. Behav Processes. 81(3):392–401.
https://doi.org/10.1016/j.beproc.2009.04.004 PMid:19520239
3. Pirrone, F., Pierantoni, L., Mazzola, S.M., Vigo, D., Albertini, M. (2015). Owner and animal factors predict incidence of, and owner reaction towards, problem behaviors in companion dogs. J Vet Behav:Clin Appl Res. 10, 295-301. https://doi.org/10.1016/j.jveb.2015.03.004
4. Marchant-Forde, J.N. (2015). The science of animal behavior and welfare:challenges, opportunities, and global perspective. Front Vet Sci. 2, 16.
https://doi.org/10.3389/fvets.2015.00016 PMid:26664945 PMCid:PMC4672293
6. Overall, K.L. (2013). Canine behavior. Normal canine behavior and ontogeny:neurological and social development, signaling and normal canine behaviors. In:Elsevier (Ed.), Manual of clinical behavioral medicine for dogs and cats. First Ed. (pp. 123-128). Mosby Year Book, Inc., St. Louis, Missouri.
7. Scott, J., Fuller, J. (1965). Genetics and the social behavior of the dog. University of Chicago Press, Chicago, IL.
8. Uzunova, K., Stoyanchev, K., Semerdzhiev, V., Rusenov, A., Penchev, I., Kostov, D. (2007). Study on the behaviour of puppies with regard to their socialization. Trakia J Sci. 5(3-4):12-15.
9. Houpt, K.A. (2011). Development of Behavior. In:Blackwell Publishing (Ed.), Domestic animal behavior for veterinarians and animal scientists. Fifth Edition. (p. 416). John Wiley &Sons, New York.
10. Case, L.P. (2013). Developmental Behavior:Puppy to Adult. In:Blackwell Publishing (Ed.), The dog:Its behavior, nutrition, and healt. Second Edition. Chapter 7. Iowa State University Press.
12. King, A.J., Carlile, S. (1993). Changes induced in the representation of auditory space in the superior colliculus by rearing ferrets with binocular eyelid suture. Exp Brain Res. 94, 444–455. https://doi.org/10.1007/BF00230202 PMid:8359258
14. Blackwell, E.J., Casey, R.A., Bradshaw J.W.S. (2003). The assessment of shelter dogs to predict separation-related behaviour and the validation of advice to reduce its incidence post-homing. (p. 4). Horsham, UK:RSPCA.
17. Garland, E., Howard, M.O. (2009). Neuroplasticity, Psychosocial genomics, and the biopsychosocial paradigm in the 21st century. Health &Social Work. 34(3):191–199.
https://doi.org/10.1093/hsw/34.3.191 PMid:19728478 PMCid:PMC2933650
18. E.N.C.I., the Italian Kennel Club. (2015). The dog breeder code of ethics. Available at:http://www.enci.it/media/2115/f-7249_01.pdf. Accessed October 29, 2015.
20. Gazzano, A., Mariti, C., Notari, L., Sighieri, C., McBride, E.A. (2008). Effects of early gentling and early environment on emotional development of puppies. Appl Anim Behav Sci. 110, 294-304. https://doi.org/10.1016/j.applanim.2007.05.007
21. Fox, M.W. (1968). Methods of animal experimentation. III (2):37-73. Elsevier Inc.
24. Luescher, U.A. (2012). Canine behavioral development. Based on a chapter published in Peterson, ME, Kutzler MA (eds):Small Animal Pediatrics. St. Louis, 2011, Elsevier.
26. Malcolm, C., McCulloch, D.L., Shepherd, A. (2002). Pattern-reversal visual evoked potentials in infants:gender differences during early visual maturation. Dev Med and Child Neurol. 44 (5):345-351. https://doi.org/10.1111/j.1469-∭.2002.tb00822.x PMid:12033721
30. Bach, J., Lüpke, M., Dziallas, P., Wefstaedt, P., Uppenkamp, S., Seifert, H., Nolte, I. (2016). Auditory functional magnetic resonance imaging in dogs –normalization and group analysis and the processing of pitch in the canine auditory pathways. BMC Vet Res. 12, 32. https://doi.org/10.1186/s12917-016-0660-5 PMid:26897016 PMCid:PMC4761139
34. Ferronato, P.A.M., Domellöf, E., Rönnqvist, L. (2014). Early influence of auditory stimuli on upper-limb movements in young human infants:an overview. Front Psychol. 5, 1043. https://doi.org/10.3389/fpsyg.2014.01043 PMid:25278927 PMCid:PMC4166959
35. Korner, A., Zeanah, C., Linden, J., Berkowitz, R., Kramer, H., Agras, W. (1985). The relationship between neonatal and later activity and temperament. Child Dev. 56, 38–42. https://doi.org/10.2307/1130171 PMid:4039245
36. Kretch, K.S., Franchak, J.M., Adolph, K.E. (2014). Crawling and walking infants see the world differently. Child Dev. 85(4):1503–1518. https://doi.org/10.1111/cdev.12206 PMid:24341362 PMCid:PMC4059790
37. Adolph, K.E., Tamis-LeMonda, C.S. (2014). The costs and benefits of development:the transition from crawling to walking. Child Dev Perspect. 8(4):187-192.
https://doi.org/10.1111/cdep.12085 PMid:25774213 PMCid:PMC4357016
38. Dusing, S.C., Harbourne, R.T. (2010). Variability in postural control during infancy:implications for development, assessment, and intervention. Phys Ther. 90(12):1838-1849. https://doi.org/10.2522/ptj.2010033 PMid:20966208 PMCid:PMC2996511
39. Adolph, K.E., Robinson, S.R. (2015). Motor development. In:L. S. Liben, U. Mueller, &R. M. Lerner (Eds.), Handbook of child psychology and developmental science, Volume 2, Cognitive processes (pp.113-157). John Wiley &Sons, New York. https://doi.org/10.1002/9781118963418.childpsy204
Copyright
©2018 Pirrone F. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Acknowledgement
We thank Paolo Petrucci and the Training and Breeding Center Bau House, Via Mera 13, 20900 Monza (MB) – Italia, for making this study possible.
Conflict of Interest Statement
The authors declared that they have no potential conflict of interest with respect to the authorship and/or publication of this article.
Citation Information
Macedonian Veterinary Review. Volume 41, Issue 2, Pages 153-161, p-ISSN 1409-7621, e-ISSN 1857-7415, DOI: 10.2478/macvetrev-2018-0018, 2018