Original Scientific Article
Comparative clinical and haematological investigations in lactating cows with subclinical and clinical ketosis
Vania Marutsova * ,
Rumen Binev ,
Plamen Marutsov

Mac Vet Rev 2015; 38 (2): 159 - 166

10.14432/j.macvetrev.2015.04.042

Received: 20 January 2015

Received in revised form: 27 March 2015

Accepted: 31 March 2015

Available Online First: 16 April 2015

Published on: 15 October 2015

Correspondence: Vania Marutsova,
PDF HTML

Abstract

Ketosis of lactating cows is among the most common metabolic diseases in modern dairy farms. The economic importance of the disease is caused by the reduced milk yield and body weight loss, poor feed conversion, lower conception rates, culling and increased mortality of affected animals. In the present study, a total of 47 high-yielding dairy cows up to 45 days in milk (DIM) are included. All animals were submitted to physical examination wich included checking the rectal body temperature, heart rate, respiratory and rumen contraction rates, and inspection of visible mucous coats. The body condition was scored, and blood β-hydroxybutyrate (BHBA) concentrations were assayed. The cows were divided into 3 groups: first group (control) (n=24) with blood β-hydroxybutyrate level <1.2 mmol/l, second group (n=15) with blood β-hydroxybutyrate between 1.2-2.6 mmol/l (subclinical ketosis) and third group (n=8) with blood β-hydroxybutyrate >2.6 mmol/l (clinical ketosis). Whole blood samples were obtained and analyzed for Red Blood Cell (RBC, 1012/l), Hemoglobin (HGB, g/l), Hematocrit (HCT, %), Mean Corpuscular Volume (MCV, fl), Mean Corpuscular Hemoglobin (MCH, pg), Mean Corpuscular Hemoglobin Concentration (MCHC, g/l), White Blood Cell (WBC, 109/l), Lymphocytes (LYM, 109/l), Monocytes (MON, 109/l), Granulocytes (GRA, 109/l), Red Blood Distribution Width (RDW, %), Red Blood Cell Distribution Width Absolute (RDWa, fl), Platelets (PLT, 109/l) and Mean Platelet Volume (MPV, fl). In this study, deviations in the clinical parameters in the control group and in those with subclinical ketosis were not identified. The cows from the third group (clinical ketosis) exhibited hypotonia, anorexia and body weight loss vs. control group. Hematological analysis showed leukocytosis and lymphocytosis in cows with subclinical ketosis vs. control group. In cows with clinical ketosis WBC counts decreased (leukopenia), while hemoglobin content and hematocrit values are higher vs. control group. Blood BHBA values are higher in both groups of ketotic cows vs. the control group. The other analyzed parameters (RBC, MCH, MCHC, MCV, RDW, RDWa, MON, GRA, PLT and MPV) were close to control values

Keywords: ketosis, hematological parameters, μ-hydroxybutyrate, dairy cows


References

1. Bell A.W, Regulation of organic nutrient metabolism during transition from late pregnancy to early lactationJ. Anim. Sci 1995; 73: 2804-2819.PMid:8582872
2. Oetzel G.R, Monitoring and testing dairy herds for metabolic diseaseVet. Clin. North Am. Food Anim. Pract 2004; 20: 651-674. http://dx.doi.org/10.1016/j.cvfa.2004.06.006. PMid:15471629
3. Kirovski D, Šamanc H, Cernescu H, Jovanović M, Vujanac I, Fatty liver incidence on dairy cow farms in Serbia and RomaniaInternational Symposium New Researches in Biotechnology“, Romania, Buchurest, November 20th to 21st Biotechnology, series F, special volume 2008;
4. Radostis O.M, Gay C.C, Blood D.C, Hinchcliff K.W, Ketosis of ruminants. In:Radostits OM, DC Blood and CC Gay (Eds)Veterinary medicine:A textbook of the diseases of cattle, sheep, pigs, goats and horses 2000; 7: 9th Edition. London: Sounders Company; 1452-1462.
5. Nogalski Z, Górak E, Effects of the body condition of heifers at calving and at the first stage of lactation on milk performanceMed. Weter 2008; 64: 322-326.
6. Duffield T.F, Kelton D.F, Leslie K.E, Lissemore K.D, Lumsden J.H, Use of test day milk fat and milk protein to detect subclinical ketosis in dairy cattle in OntarioCan. Vet. J 1997; 38: 713-718.PMid:9360791 PMCid:PMC1576823
7. McArt J.A, Nydam D.V, Oetzel G.R, Dry period and parturient predictors of early lactation hyperketonemia in dairy cattleJ. Dairy Sci 2013; 96: 198-209.
http://dx.doi.org/10.3168/jds.2012-5681. PMid:23102961
8. Whitaker D.A, Smith E.J, da Rosa G.O, Kelly J.M, Some effects of nutrition and management on the fertility of dairy cattleVet. Rec 1993; 133: 61-64. http://dx.doi.org/10.1136/vr.133.3.61. PMid:8212484
9. Walsh R, LeBlanc S, Duffield T, Leslie K, Retrospective analysis of the association between subclinical ketosis and conception failure in Ontario dairy herdsProc. World Buiatrics Congress / Med. Vet. Quebec 2004; 34-152.
10. Suriyasathaporn W, Heuer C, Noordhuizen-Stassen E.N, Schukken Y.H, Hyperketonemia and udder defense:a reviewVet. Res 2000; 31: 397-412.
http://dx.doi.org/10.1051/vetres:2000128. PMid:10958241
11. LeBlanc S.J, Leslie K.E, Duffield T.F, Metabolic predictors of displaced abomasum in dairy cattleJ. Dairy Sci 2005; 88: 159-170. http://dx.doi.org/10.3168/jds.S0022-0302(05)72674-6.
12. Duffield T.F, Lissemore K.D, McBride B.W, Leslie K.E, Impact of hyperketonemia in early lactation dairy cows on health and productionJ. Dairy Sci 2009; 92: 571-580.
http://dx.doi.org/10.3168/jds.2008-1507. PMid:19164667
13. Meglia G.E, Johannisson A, Petersson L, Persson Waller K, Changes in some blood micronutritiens, leukocytes and neutrophil expression of adhesion molecules in periparturient dairy cowsActa Vet. Scand 2001; 42: 139-150. http://dx.doi.org/10.1186/1751-0147-42-139. PMid:11455894 PMCid:PMC2202342
14. Ospina P.A, Nydam D.V, Stokol T, Overton T.R, Associations of elevated non-esterified fatty acids and β-hydroxybutyrate concentrations with early lactation reproductive performance and milk production in transition dairy cattle in the northeastern United StatesJ. Dairy Sci 2010; 93: 1596-1603. http://dx.doi.org/10.3168/jds.2009-2852. PMid:20338437
15. Hungerford T.G, Diseases of cattleDiseases of livestock 1990; 9t Edition. 34-347.
16. Oetzel G.R, Herd-level ketosis – diagnosis and risk factorsPreconference seminar 7C:Dairy herd problem investigation strategies:transition cow troubleshooting American association of bovine practitioners, 40th Annual Conference, September 19, 2007 – Vancouver, BC, Canada 2007;
17. Waltner S.S, McNamara J.P, Hillers J.K, Relationships of body condition score to production variables in high producing Holstein cowsJ. Dairy Sci 1993; 76: 3410-3419.
http://dx.doi.org/10.3168/jds.S0022-0302(93)77679-1.
18. Bewley J.M, Schutz M.M, Review:An interdisciplinary review of body condition scoring for dairy cattleProfessional Animal Scientist 2008; 24: 507-529.
19. Garnsworthy P, Influences of body condition on fertility and milk yieldProc dairy cattle reproduction council convention 2008; 63-72.
20. Skidmore A.L, Peeters K.A.M, Sniffen C.J, Brand A, Brand A, Noordhuizen J.P. T. M, Schukken Y. H, Monitoring dry period managementHerd Health and Production Management in Dairy Practice 2001; Wageningen Press; 171-201.
21. Gillund P, Reksen O, Grohn Y.T, Karlberg K, Body condition related to ketosis and reproductive performance in Norwegian dairy cowsJ. Dairy Sci 2001; 84: 1390-1396.
http://dx.doi.org/10.3168/jds.S0022-0302(01)70170-1.
22. Găvan C, Retea C, Motorga V, Changes in the hematological profile of Holstein primiparous in periparturient period and in early to mid-lactationAnimal Sciences and Biotechnologies 2010; 43: 244-246.
23. Duffield T.F, Monitoring strategies for metabolic disease in transition dairy cows 2004; Québec, Canada: IVIS, 23rd WBC Congress;
24. Goldhawk C, Chapinal N, Veira D.M, Weary D.M, Keyserlingk von M.A.G, Prepartum feeding behavior is an early indicator of subclinical ketosisJ. Dairy Sci 2009; 92: 4971-4977. http://dx.doi.org/10.3168/jds.2009-2242. PMid:19762814
25. Kinoshita A, Wolf C, Zeyner A, Studies on the incidence of hyperketonemia with and without hyperbilirubinaemia in cows in Mecklenburg-Vorpommern (in Germany) in the course of the yearTieraerztliche Praxis 2010; 38: 7-15.
26. Seifi H.A, LeBlanc S.J, Leslie K.E, Duffield T.F, Metabolic predictors of post-partum disease and culling risk in dairy cattleVet. J 2011; 188: 216-220.
http://dx.doi.org/10.1016/j.tvjl.2010.04.007. PMid:20457532
27. Geishauser T, Leslie K, Tenhag J, Bashiri A, Evaluation of eight cowside ketone tests in milk for detection of subclinical ketosis in dairy cowsJ. Dairy Sci 2000; 83: 296-299.
28. Binev R, Marutsova V, Radev V, Clinical and haematological studies on subclinical lactational ketosis in dairy goatsAgricultural Science and Technology 2014; 6: 427-430.
29. Andrews A.H, Blowey R.W, Boyd H, Eddy R.G, Bovine Medicine Diseases and Husbandry of Cattle 2004; Second edition. USA: Blackwell Publishing Company;
30. González F.D, Mui-o R, Pereira V, Campos R, Benedito J.L, Relationship among blood indicators of lipomobilization and hepatic function during early lactation in high-yielding dairy cowsJ. Dairy Sci 2011; 12: 251-255. http://dx.doi.org/10.4142/jvs.2011.12.3.251.
31. Suthar V.S, Canelas-Raposo J, Deniz A, Heuwieser W, Prevalence of subclinical ketosis and relationships with postpartum diseases in European dairy cowsJ. Dairy Sci 2013; 96: 2925-2938. http://dx.doi.org/10.3168/jds.2012-6035. PMid:23497997
32. Edmonson A.J, Lean I.J, Weaver L.D, Farver T, Webster G, A body condition chart for Holstein dairy cowsJ. Dairy Sci 1989; 72: 68-78.
http://dx.doi.org/10.3168/jds.S0022-0302(89)79081-0.
33. LeBlanc S, Monitoring metabolic health of dairy cattle in the transition periodJ. Reprod. Dev 2010; 56: 29-35. http://dx.doi.org/10.1262/jrd.1056S29.
34. Grummer R.R, Etiology of lipid-related metabolic disorders in periparturient dairy cowsJ. Dairy Sci 1993; 76: 3882-3896. http://dx.doi.org/10.3168/jds.S0022-0302(93)77729-2.
35. López-Gatius F, Santolaria P, Yaniz J, Rutllant J, López-Béjar M, Factors affecting pregnancy loss from gestation day 38 to 90 in lactating dairy cows from a single herdTheriogenology 2002; 57: 1251-1261. http://dx.doi.org/10.1016/S0093-691X(01)00715-4.
36. Ruegg P.L, Milton R.L, Body condition scores of Holstein cows on Prince Edward Island, Canada:relationship with yield, reproductive performance, and diseaseJ. Dairy Sci 1995; 78: 552-564. http://dx.doi.org/10.3168/jds.S0022-0302(95)76666-8.
37. Markusfeld O, Galon N, Ezra E, Body condition score, health, yield and fertility in dairy cowsVet. Rec 1997; 141: 67-72. http://dx.doi.org/10.1136/vr.141.3.67. PMid:9257435
38. Sahinduran S, Sezer K, Buyukoglu T, Albay M.K, Karakurum M.C, Evaluation of some haematological and biochemical parameters before and after treatment in cows with ketosis and comparison of different treatment methodsJ. Anim. Vet. Adv 2010; 9: 266-271. http://dx.doi.org/10.3923/javaa.2010.266.271.
39. Belić B, Cincović M.R, Stojanović D, Kovačević Z, Vidović B, Morphology of erythrocyte and ketosis in dairy cows with different body conditionContemporary agriculture 2010; 59: 306-311.
40. Sandev N, Ilieva D, Sizov I, Rusenova N, Iliev E, Prevalence of enzootic bovine leukosis in the Republic of Bulgaria in 1997-2004Vet. Arhiv 2006; 76: 263-268.
41. Hoeben D, Heyneman R, Burvenich C, Elevated levels of beta-hydroxybutyric acid in periparturient cows and in vitro effect on respiratory burst activity of bovine neutrophilsVet. Immunol. Immunopathol 1997; 58: 165-170. http://dx.doi.org/10.1016/S0165-2427(97)00031-7.
42. Hoeben D, Burvenich C, Massart-Leen A.M, Lenjou M, Nijs G, Van Bockstaele D, In vitro effect of ketone bodies, glucocorticosteroids and bovine pregnancy-associated glycoprotein on cultures of bone marrow progenitor cells of cows and calvesVet. Immunol. Immunopathol 1999; 68: 229-240. http://dx.doi.org/10.1016/S0165-2427(99)00031-8.
43. Suriyasathaporn W, Daemen A.J, Noordhuizen-Stassen E.N, Dieleman S.J, Nielen M, Schukken Y.H, Beta-hydroxybutyrate levels in peripheral blood and ketone bodies supplemented in culture media affect the in vitro chemotaxis of bovine leukocytesVet.Immunol. Immunopathol 1999; 68: 177-186. http://dx.doi.org/10.1016/S0165-2427(99)00017-3.
44. Cincović R.M, Belić B, Radojičić B, Hristov S, Đoković R, Influence of lipolysis and ketogenesis to metabolic and hematological parameters in dairy cows during periparturient periodActa Vet 2012; 62: 429-444. http://dx.doi.org/10.2298/AVB1204429C.
45. Belić B, Cincović M. R, Krčmar Lj, Vidović B, Reference values and frequency distribution of hematological parameters in cows during lactation and in pregnancyContemporary agriculture 2011; 60: 145-151.
46. Burton J.L, Madsen S.A, Chang L.C, Weber P.S, Buckham K.R, Van Dorp R, Hickey M.C, Earley B, Gene expression signatures in neutrophils exposed to glucocorticoids:A new paradigm to help explain “neutrophil dysfunction” in parturient dairy cowsVet. Immunol. Immunopathol 2005; 105: 197-219. http://dx.doi.org/10.1016/j.vetimm.2005.02.012. PMid:15808301
47. Hefnawy A.E, Shousha S, Youssef S, Hematobiochemical profile of pregnant and experimentally pregnancy toxemic goatsJ. Basic. Appl. Chem 2011; 1: 65-69.
48. Wyle F.A, Kent J.R, Immunosuppression by sex steroid hormonesClin. Exp. Immunol 1977; 27: 407-PMid:862230 PMCid:PMC1540928


Copyright

© 2015 Marutsova V. This is an Open Access article distributed under the terms of the Creative Commons Attribution-Non Commercial License (http://creativecommons.org), which permits unrestricted non-commercial use, distribution, and reproduction in any medium provided the original work is properly cited.

Conflict of Interest Statement

The authors declared that they have no potential conflict of interest with respect to the authorship and/or publication of this article.

Citation Information

Macedonian Veterinary Review. Volume 38, Issue 2, Pages 159-166, p-ISSN 1409-7621, e-ISSN 1857-7415, DOI:  10.14432/j.macvetrev.2015.04.042, 2015