Original Scientific Article
In-vitro labelling of ovine adipose-derived mesenchymal stem cells (oADMSCS) and tracking using MRI technique
Ravi Gnanam Gnanadevi ,
Geetha Ramesh ,
Thandavan Arthanari Kannan * ,
Benjamin Justin William ,
Manoharan Parthiban ,
Gnanasigamani Sathyan

Mac Vet Rev 2017; 40 (2): 137 - 142

10.1515/macvetrev-2017-0018

Received: 27 November 2016

Received in revised form: 13 February 2017

Accepted: 15 April 2017

Available Online First: 22 May 2017

Published on: 15 October 2017

Correspondence: Thandavan Arthanari Kannan, kanns2000@gmail.com
PDF HTML

Abstract

To understand the mechanisms standing behind a successful stem cell‑based therapy, the monitoring of transplanted cell’s migration, homing as well as the engraftment efficiency and functional capability in-vivo has become a critical issue. The present study was designed to track the labelled oADMSCs in-vitro and its visualization through MRI technique. oADMSCs from passage 4 (P-4) to passage 6 (P-6) were labelled with superparamagnetic iron oxide (SPIO) conjugated with rhodamine (Molday Ion Rhodamine-B - MIRB) at the concentration of 25μg Fe/ml in DMEM. Internalized MIRB was observed under fluorescent microscope after 72 hrs of incubation. Labelled oADMSCs showed Prussian Blue positive reaction demonstrating the iron uptake of the cells. The viability of the MIRB-labelled oADMSCs ranged between 98-99 per cent and Trypan blue exclusion test showed no significant difference in viability between labelled and unlabelled oADMSCs. MR signal in control group of cells was similar to that of water. MR signals or fluorescence in MIRB-labelled cells decreased with increasing concentrations of iron. The T2 weighted images of MIRB-labelled oADMSCs increased with increasing concentrations of SPIOs. The MIRB was found to be nontoxic, and did not affect proliferation capacity in-vitro.

Keywords: ovine, mesenchymal stem cells, in-vitro MIRB labelling, MRI imaging


References

1. Shen, W.B., Plachez, C., Chan, A., Yarnell, D., Puche, A.C, Fishman, P.S., Yarowsky, P. (2013). Human neural progenitor cells retain viability, phenotype, proliferation, and lineage differentiation when labeled with a novel iron oxide nanoparticle, Molday ION Rhodamine B. International Journal of Nanomedicine 8, 4593–4600. PMid:24348036 PMCid:PMC3849141

2. Daldrup-Link, H.E., Rudelius, M., Piontek, G., Rudelius, M., Piontek, G., Metz, S., Bräuer, R., Debus, G., Corot, C., Schlegel, J., Link, T. M., Peschel, C., Rummeny, E.J., Oostendorp, R.A. (2005). Migration of iron oxide-labeled human hematopoietic progenitor cells in a mouse model:in vivo monitoring with 1.5-T MR imaging equipment. Radiology 234, 197–205. https://doi.org/10.1148/radiol.2341031236 PMid:15618382

3. Bussolati, B., Camussi, G. (2006). Adult stem cells and renal repair. J Nephrol. 19, 706–709. PMid:17173241

4. Henning, T.D., Wendland, M.F., Golovko, D., Sutton, E.J., Sennino, B., Malek, F., Bauer, J.S., McDonald, D.M., Daldrup-Link, H. (2009). Relaxation effects of ferucarbotran-labeled mesenchymal stem cells at 1.5T and 3T:discrimination of viable from lysed cells. Magn Reson Med. 62, 325–32. https://doi.org/10.1002/mrm.22011 PMid:19353670 PMCid:PMC2931823

5. Hoehn, M., Kustermann, E., Blunk, J., Wiedermann, D., Trapp, T., Wecker, S., Focking, M., Arnold, H., Hescheler, J., Fleischmann, B.K., Schwindt, W., Bührle, C. (2002). Monitoring of implanted stem cell migration in vivo:a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc Natl Acad Sci. 99, 16267–16272. https://doi.org/10.1073/pnas.242435499 PMid:12444255 PMCid:PMC13↘

6. Guzman, R., Uchida, N., Bliss, T.M., He, D., Christopherson, K.K., Stellwagen, D., Capela, A., Greve, J., Malenka, R.C., Moseley, M.E., Palmer, T.D., Steinberg, G.K. (2007). Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proc Natl Acad Sci USA. 104 (24):10211–10216. https://doi.org/10.1073/pnas.0608519104 PMid:17553967 PMCid:PMC1891235

7. Sykova, E., Jendelova, P. (2007). Migration, fate and in-vivo imaging of adult stem cells in the CNS. Cell Death Differ. 14, 1336–1342. https://doi.org/10.1038/sj.cdd.4402140 PMid:17396130

8. Addicott, B., Willman, M., Rodriguez, J., Padgett, K., Han, D., Berman, D., Hare, J.M., Kenyon, N.S. (2011). Mesenchymal stem cell labeling and in vitro MR characterization at 1.5T of new SPIO contrast agent:Molday ION Rhodamine B™Contrast Media. Mol Imaging 6, 7 18. https://doi.org/10.1002/cmmi.396 PMid:20690161 PMCid:PMC4410881

9. Guercio, A., Marco, A. D., Casella, S., Cannella, V., Russotto, L., Purpari, G., Bella, S. D., Piccione, G. (2012). Production of canine mesenchymal stem cells from adipose tissue and their application in dogs with chronic osteoarthritis of the humeroradial joints. Cell Biol. Int. 36, 189-194. https://doi.org/10.1042/CBI20110304 PMid:21936851

10. Ren, Z.H., Wang, J.Y., Zou, C.L., Guan, Y.Q., Zhang, Y.A. (2011). Labeling of cynomolgus monkey bone marrow-derived mesenchymal stem cells for cell tracking by multimodality imaging. Sci China Life Sci. 54, 981–987. https://doi.org/10.1007/s11427-011-4239-x PMid:22173303

11. Natalio, F., Wiese, S., Friedrich, N., Werner, P., Tahir, M.N. (2014). Localization and characterization of ferritin in Demospongiae:a possible role on spiculogenesis. Mar Drugs. 12 (8):4659–4676. https://doi.org/10.3390/md12084659 PMid:25153764 PMCid:PMC4145336

12. Nan, H., Huang, J., Li, H., Li. Q., Liu, D. (2013). Assessment of biological characteristics of adipose tissue derived stem cells co labeled with Molday ION Rhodamine B™and green fluorescent protein in-vitro. Mol Med Rep. 8, 1446-1452. PMid:24065138

13. Snedecor, C.W., Cochran, W.G. (1994). Statistical methods. 9th Ed., Iowa state University press, Ames, Iowa.

14. Fan, J., Tan, Y., Jie, L., Wu, X., Yu, R., Zhang, M. (2013). Biological activity and magnetic resonance imaging of superparamagnetic iron oxide nanoparticles-labeled adipose-derived stem cells. Stem Cell Res Ther. 4, 44. https://doi.org/10.1186/scrt191 PMid:23618360 PMCid:PMC3706947

15. Schmidtke-Schrezenmeier, G., Urban, M., Musyanovych, A., Nder, V.M.A., Rojewski, M., Fekete, N., Menard, C., Deak, E., Tarte, K., Rasche, V., Landfester, K., Schrezenmeier, H. (2011). Labeling of mesenchymal stromal cells with iron oxide –poly (L -lactide) nanoparticles for magnetic resonance imaging:uptake, persistence, effects on cellular function and magnetic resonance imaging properties. Cytotherapy 13, 962–975. https://doi.org/10.3109/14653249.2011.571246 PMid:21492060 PMCid:PMC3172145

16. Guo, R.M., Cao, N., Zhang, F., Wang, Y.R., Wen, X.H., Shen J., Shuai, X.T. (2012). Controllable labelling of stem cells with a novel superparamagnetic iron oxide–loaded cationic nanovesicle for MR imaging. Eur Radiol. 22 (11):2328-2337. https://doi.org/10.1007/s00330-012-2509-z PMid:22653284

17. Gnanadevi, R., Geetha Ramesh, Kannan, T. A., Justin William, B., Sathyan G., Hayath Basha, S. (2016). In-vitro study of MIRB labeled ovine bone marrow derived mesenchymal stem cells by MRI Technique. International Journal of Livestock Research 6 (9):38-48. https://doi.org/10.5455/ijlr.20160917082803

18. Guthi, J.S., Yang, S.G., Huang, G., Li, S., Khemtong, C., Kessinger, C., Peyton, M., Minna, J., Brown, K.C., Gao, J. (2010). MRI-visible micellar nanomedicine for targeted drug delivery to lung cancer cells. Mol Pharm. 7, 32–40. https://doi.org/10.1021/mp9001393 PMid:19708690 PMCid:PMC2891983

19. Li, L., Jiang, W., Luo, K., Song, H., Lan, F., Wu, Y., Gu, Z. (2013). Superparamagnetic iron oxide nanoparticlesas MRI contrast agents for non-invasive stem cell labeling and tracking. Theranostics 3 (8):595-615. https://doi.org/10.7150/thno.5366 PMid:23946825 PMCid:PMC3741608

20. Shapiro, E.M, Skrtic, S., Sharer, K., Hill, J. M., Dunbar, C. E., Koretsky, A.P. (2004). MRI detection of single particles for cellular imaging. Proc Natl Acad Sci. 101, 10901–10906. https://doi.org/10.1073/pnas.0403918101 PMid:15256592 PMCid:PMC503717

21. Salamon, J., Wicklein, D., Didié, M., Lange, C., Schumacher, U., Adam, G., Peldschus, K. (2014). Magnetic resonance imaging of single co-labeled mesenchymal stromal cells after intracardial injection in mice. Fortschr Röntgenstr. 186, 367–376. https://doi.org/10.1055/s-0034-1366097 PMid:24683169


Copyright

© 2017 Gnanadevi R.G.This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Conflict of Interest Statement

The authors declared that they have no potential conflict of interest with respect to the authorship and/or publication of this article.

Citation Information

Macedonian Veterinary Review. Volume 40, Issue 2, Pages 137-142, p-ISSN 1409-7621, e-ISSN 1857-7415, DOI: 10.1515/macvetrev-2017-0018, 2017