Original Scientific Article
Pharmacokinetic behavior of marbofloxacin in plasma from chickens at different seasons
Natalia Francisca Urzúa Pizarro * ,
Carlos Alberto Errecalde ,
Guillermo Fermin Prieto ,
Carlos Fernando Lüders ,
María Paula Tonini ,
Eduardo Jesús Picco

Mac Vet Rev 2017; 40 (2): 143 - 147

10.1515/macvetrev-2017-0019

Received: 12 December 2016

Received in revised form: 10 March 2017

Accepted: 24 March 2017

Available Online First: 10 June 2017

Published on: 15 October 2017

Correspondence: Natalia Francisca Urzúa Pizarro, nurzuapizarro@ayv.unrc.edu.ar
PDF HTML

Abstract

The purpose of this study was to evaluate the differences in the disposition and plasma pharmacokinetic behavior of marbofloxacin (MAR) in broiler chickens at different seasons. Chicken broilers (n = 345) were used, in lots of 5 individuals, divided into 6 groups depending on the way of administration, intravenous or oral (dose 2 mg/kg) and the test period. Post-administration plasma samples were obtained at different times, intravenously (0.08 to 24 hours) and orally (0.25 to 120 hours). A liquid-liquid extraction of MAR was performed by high-performance liquid chromatography (HPLC) with a fluorescent detector. The plasma concentrations obtained at the different sampling times of each season, were analyzed with ANOVA and pharmacokinetic analysis was conducted with the PK Solution 2.0 software. The concentration of marbofloxacin in plasma was significantly lower in winter and summer than in spring, with MAR being detected in winter up to 72 hours post-application, coinciding with the differences in MAR pharmacokinetics parameters with increase in the average residence time (MRT) is 9.4 hours in winter. Increased clearance MAR in summer (7.5 ml/min/kg) coincides with MRT 6.3 hours. Finally, the oral bioavailability of MAR is lower in summer and winter (86 ± 1.7% and 78 ± 3.1%) than in spring (94 ± 5.2 %). There are differences in the disposition and plasma pharmacokinetic behavior of MAR applied orally in broiler chickens, coinciding with the physiological changes in the thermoregulation of birds, considering its correct therapeutic management and contributing to provide safe food for human consumption.

Keywords: pharmacokinetics, marbofloxacin, chickens, seasons changes


References

1. Anadón, A., Martínez-Larraga-a, M., Fernández-Cruz, M. (1993). Physiological and pharmacological considerations in aviary therapy. Rev. Med. Vet. 144 (10):745-757.

2. Landoni, M., Albarellos, G. (2015). The use of antimicrobial agents in broiler chickens. Vet. J. 205, 21-27. https://doi.org/10.1016/j.tvjl.2015.04.016 PMid:25981931

3. Hofacre, C. (2007). Antimicrobial drug use in poultry. In:B.D. GigueréS. Prescott (Eds.), An antimicrobial therapy in veterinary medicine (pp. 545-553). Iowa:Blackwell Pub.

4. Ding, H., Wang, L., Shen, X., Gu, X., Zeng, D., Zeng, Z. (2013). Plasma and tissue pharmacokinetics of marbofloxacin in experimentally infected chickens with Mycoplasma gallisepticum and Escherichia coli. J. Vet. Pharmacol. Ther. 36, 511-515. https://doi.org/10.1111/jvp.12049 PMid:23550715

5. El-Komy, A., Attia, T., El Latif, A., Fathy, H. (2016). Bioavailability pharmacokinetics and residues of marbofloxacin in normal and E. coli infected broiler chicken. In. J. Pharmacol. Tox. 2 (4):144-149.

6. Huang, X., Chen, Z., Zhang, S., Zeng, Z. (2003). Influence of experimentally Pasteurella multocida infection on the pharmacokinetics of marbofloxacin in broiler chickens. Acta Veterinaria et Zootechnica Sinica 34, 98-102.

7. Anadón, A., Martínez-Larraga-a, M., Días, M., Martínez, M., Frejo, M., Martínez, M., Tafur, M., Castellano., V. (2002). Pharmacokinetic characteristics and tissue residues for marbofloxacin and its metabolite N-desmethyl-marbofloxacin in broiler chickens. AJVR. 63, 927-933. https://doi.org/10.2460/ajvr.2002.63.927

8. Yuan, L., Wang, R., Sun, L., Zhu, L., Luo, X., Sun, J., Fang, B., Liu, Y. (2010). Pharmacokinetics of marbofloxacin in Muscovy duck (Cairina moschata). J. Vet. Pharmacol. Ther. 34, 82-85. https://doi.org/10.1111/j.1365-2885.2010.01207.x PMid:21219349

9. Martinez, M., Modric, S. (2009). Patient variation in veterinary medicine:Part I. Influence of altered physiological states. J. Vet. Pharmacol. Ther. 33, 213–226.
https://doi.org/10.1111/j.1365-2885.2009.01139.x PMid:20557438

10. Martinez, M., Modric, S. (2010). Patient variation in veterinary medicine:Part II. Influence of physiological variables. J. Vet. Pharmacol. Ther. 34, 209–223. PMid:21083665

11. Toutain, P., Ferran, A., Bousquet-Mélou, A. (2010). Species differences in pharmacokinetics and pharmacodynamics. In:F. Cunningham, J. Elliott, P. Lees (Eds.), Comparative and veterinary pharmacology (pp. 19-48). Francia:Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-10324-7_2

12. Böttcher, S., Baum, H., Hoppe-Tychy, T., Benz, C. (2001). An HPLC assay and a microbiological assay to determine levofloxacin in soft tissue, bone, bile and serum. J. Pharm. Biomed. Anal. 25, 197-203. https://doi.org/10.1016/S0731-7085(00)00478-7

13. Urzúa, N., Errecalde, C., Prieto, G., Lüders, C., Picco, E., Paula Tonini, M. (2016). Plasma pharmacokinetics and muscle disposition of marbofloxacin in chickens. IJVM. 1, 1-6.

14. Farrier, D.S. (1999). PK Solutions 2.0, Non-compartmental pharmacokinetics. Data analysis. Ashland, USA.

15. Toutain, P., Bousquet-Mélou, A. (2004). Bioavailability and its assessment. J. Vet. Pharmacol. Ther. 7, 455-466. https://doi.org/10.1111/j.1365-2885.2004.00604.x PMid:15601440

16. Di Rienzo, J., Casanove F., Balzarini M., Gonzales, L., Tablada, M., Robledo, C. (2016). InfoStat versión 2016. Group InfoStat. FCA. Universidad Nacional de Cordoba. Argentina. www.infostat.com.ar

17. Scholar, E. (2002). Fluoroquinolones:past, present and future of a novel group of antibacterial agents. Am. J. Pharm Educ. 66, 164-172.

18. Estrada, P., Márquez, G. (2005). Interactions of environmental factors with productive behavior response in broiler chickens. Colombian Journal of Animal Sciences 18, 256-273.

19. Whittow, G. (1976). Regulation of body temperature. In:P.D Sturkie (Ed.), Avian Physiology (pp. 152-189). New York Inc:Springer-Verlag. https://doi.org/10.1007/978-3-642-96274-5_7

20. Hai, L., Rong, D., Zhang, Z. (2000). The effect of thermal environment on the digestion of broilers. J. Anim. Physio. Anim. Nutr. 83, 57-64.
https://doi.org/10.1046/j.1439-0396.2000.00223.x

21. Quinteiro-Filho, W., Rodrigues, A., Ribeiro, V., Ferraz-de-paula, M., Pinheiro, L., Palermo-neto, J. (2010). Acute heat stress impairs performance parameter sand induces mild intestinal enteritis in broiler chickens:Role of acute HPA axis activation. J. Anim. Sci. 90, 1986–1994. https://doi.org/10.2527/jas.2011-3949 PMid:22228037

22. Yahav, S. (2015). Regulation of body temperature:strategies and mechanisms. In:G. Colin (Ed.), Sturkie's Avian Physiology (pp. 869-897). London:Elsevier. https://doi.org/10.1016/B978-0-12-407160-5.00037-3

23. Nawaz, M., Nawaz, R. (1983). Pharmacokinetics and urinary excretion of sulphadimidine in sheep during summer and winter. Vet Rec. 16, 379-381. https://doi.org/10.1136/vr.112.16.379

24. Sun, M., Li, J., Gai, C., Chang, Z., Li, J., Zhao, F. (2014). Pharmacokinetics of difloxacin in olive flounder Paralichthysolivaceus at two water temperatures. J. Vet. Pharmacol. Ther. 37, 186-191. https://doi.org/10.1111/jvp.12062 PMid:23742101


Copyright

© 2017 Pizarro N. This is an open-access article publishedunder the terms of the Creative Commons Attribution License whichpermits unrestricted use, distribution, and reproduction in any medium,provided the original author and source are credited.

Conflict of Interest Statement

The authors declared that they have no potential conflict of interest with respect to the authorship and/or publication of this article.

Citation Information

Macedonian Veterinary Review. Volume 40, Issue 2, Pages 143-147, p-ISSN 1409-7621, e-ISSN 1857-7415, DOI: 10.1515/macvetrev-2017-0019, 2017