Original Scientific Article
The role of myofibroblasts in granulomatous lymphadenitis in pigs naturally infected with M. avium subsp. hominissuis
Vladimir Polaček * ,
Dejan Vidanović ,
Biljana Božić ,
Žolt Beckei ,
Ivana Vučićević ,
Jasna Prodanov-Radulović ,
Sanja Aleksić-Kovacević

Mac Vet Rev 2018; 41 (1): 47 - 53

10.1515/macvetrev-2017-0030

Received: 13 October 2016

Received in revised form: 17 November 2017

Accepted: 23 November 2017

Available Online First: 09 December 2017

Published on: 15 March 2018

Correspondence: Vladimir Polaček, vlade@niv.ns.ac.rs
PDF HTML

Abstract

The most important morphological characteristic of infections caused by M. avium subsp. hominissuis (MAH) is granuloma formation. The growth of mycobacteria is in accordance with anti-bacterial effector mechanisms of the host within granuloma. The most important cytokines for „orchestrating“the host defense are interferon γ (INF-γ), tumor necrosis factor α (TNF-α) and transforming growth factor β1 (TGF-β1). Myofibroblasts that make up a peripheral layer of granuloma largely express receptors for TGF-β1. This cytokine is believed to affect the induction of myofibroblast proliferation. The aim of this paper is to point out the importance of myofibroblasts in the formation and sustainability of granuloma during natural infection of pigs with M. avium subsp. hominissuis. Examinations have been performed on the samples of Lnn. jejunales, Lnn. ileocolici and Lnn. colici of 100 pigs with a positive tuberculin skin test. The molecular method confirmed the presence of a genome M. avium subsp. hominissuis. The microscopic examination of lymph node samples stained by the routine hematoxyilin-eosin (HE) method, showed the presence of granulomatous lymphadenitis. The method of double immunohistochemical staining revealed that myofibroblasts which express TGF-β1 receptor type I (TGF-β1RI) and α smooth muscle actin (α SMA) have an important role in the morphogenesis of granulomatous lymphadenitis in pigs infected with MAH.

Keywords: Mycobacterium avium subsp. hominissuis, granuloma, myofibroblast, TGF-β1, TGF-β1RI


References

1. Inderlied, C.B., Kemper, C.A., Bermudez, L.E. (1993). The Mycobacterium avium complex. Clin Microbiol Rev. 6 (3):266–310. https://doi.org/10.1128/CMR.6.3.266 PMid:835∃PMCid:PMC358286
2. Johansen, T., Agdestein, A., Olsen, I., Nilsen, S., Holstad, G., Djønne, B., et al. (2009). Biofilm formation by Mycobacterium avium isolates originating from humans, swine and birds. BMC Microbiol. 9(1):159. https://doi.org/10.1186/1471-2180-9-159 PMid:19660141 PMCid:PMC2741467
3. Agdestein, A., Olsen, I., Jørgensen, A., Djønne, B., Johansen, T.B. (2014). Novel insights into transmission routes of Mycobacterium avium in pigs and possible implications for human health. Vet Res. 45, 46. https://doi.org/10.1186/1297-9716-45-46 PMid:24742183 PMCid:PMC4021465
4. Bezos, J., Álvarez-Carrión, B., Rodríguez-Bertos, A., Fernández-Manzano, Á., de Juan, L., Huguet, C., et al. (2016). Evidence of disseminated infection by Mycobacterium avium subspecies hominissuis in a pet ferret (Mustela putorius furo). Research in Veterinary Science 109, 52-55. https://doi.org/10.1016/j.rvsc.2016.09.013 PMid:27892873
5. Matlova, L., Dvorska, L., Ayele, W.Y., Bartos, M., Amemori, T., Pavlik, I. (2005). Distribution of Mycobacterium avium complex isolates in tissue samples of pigs fed peat naturally contaminated with mycobacteria as a supplement. J Clin Microbiol. 43(3):1261–1268. https://doi.org/10.1128/JCM.43.3.1261-1268.2005 PMid:15750094 PMCid:PMC1081227
6. Biet, F., Boschiroli, M.L. (2014). Non-tuberculous mycobacterial infections of veterinary relevance. Res Vet Sci. 97, S69–77. https://doi.org/10.1016/j.rvsc.2014.08.007 PMid:25256964
7. Polaček, V., Aleksić-Kovačević, S. (2016). Mycobacteriosis in pigs –an underrated threat. Acta Vet Beograd. 66(4):429–443. https://doi.org/10.1515/acve-2016-0037
8. Pate, M., Zdovc, I., Pirs, T., Krt, B., Ocepek, M. (2004). Isolation and characterisation of Mycobacterium avium and Rhodococcus equi from granulomatous lesions of swine lymph nodes in Slovenia. Acta Vet Hung. 52(2):143–150. https://doi.org/10.1556/AVet.52.2004.2.2 PMid:1516∩
9. Agdestein, A., Johansen, T.B., Kolbjørnsen, Ø., Jørgensen, A., Djønne, B., Olsen, I. (2012). A comparative study of Mycobacterium avium subsp. avium and Mycobacterium avium subsp. hominissuis in experimentally infected pigs. BMC Vet Res. 8(1):11. https://doi.org/10.1186/1746-6148-8-11 PMid:22284630 PMCid:PMC3296603
10. Saunders, B.M., Britton, W.J. (2007). Life and death in the granuloma:immunopathology of tuberculosis. Immunol Cell Biol. 85(2):103–111. https://doi.org/10.1038/sj.icb.7100027 PMid:17213830
11. Wangoo, A., Johnson, L., Gough, J., Ackbar, R., Inglut, S., Hicks, D., et al. (2005). Advanced granulomatous lesions in Mycobacterium bovis-infected cattle are associated with increased expression of type I procollagen, (WC1+) T cells and CD 68+cells. J Comp Pathol. 133(4):223–234. https://doi.org/10.1016/j.jcpa.2005.05.001 PMid:16154140
12. Miković, R., Knežević, A., Milić, N., Krnjaić, D., Radojičić, M., Veljović, L., et al. (2016). Molecular detection of pseudorabies virus (PrV), porcine parvovirus (PPV) and porcine circovirus 2 (PCV2) in swine in Republic of Montenegro. Acta Vet Beograd. 66(3):347–358. https://doi.org/10.1515/acve-2016-0030
13. Lukač, B., Knežević, A., Milić, N., Krnjaić, D., Veljović, L., Milićević, V., et al. (2016). Molecular detection of PCV2 and PPV in pigs in Republic of Srpska, Bosnia and Herzegovina. Acta Vet Beograd. 66(1):51–60. https://doi.org/10.1515/acve-2016-0004
14. Veldhoen, M., Hocking, R.J., Flavell, R.A., Stockinger, B. (2006). Signals mediated by transforming growth factor-βinitiate autoimmune encephalomyelitis, but chronic inflammation is needed to sustain disease. Nat Immunol. 7(11):1151–1156. https://doi.org/10.1038/ni1391 PMid:16998492
15. Agdestein, A., Johansen, T.B., Polaček, V., Lium, B., Holstad, G., Vidanović, D., et al. (2011). Investigation of an outbreak of mycobacteriosis in pigs. BMC Vet Res. 7, 63. https://doi.org/10.1186/1746-6148-7-63 PMid:22014189 PMCid:PMC3215643
16. Birkness, K., Guarner, J., Sable, S.B., Tripp, R., Kellar, K.L., Bartlett, J., et al. (2007). An in vitro model of the leukocyte interactions associated with granuloma formation in Mycobacterium tuberculosis infection. Immunol Cell Biol. 85(2):160–168. https://doi.org/10.1038/sj.icb.7100019 PMid:17199112
17. Hibiya, K., Kasumi, Y., Sugawara, I., Fujita, J. (2008). Histopathological classification of systemic Mycobacterium avium complex infections in slaughtered domestic pigs. Comp Immunol Microbiol Infect Dis. 31(4):347–366. https://doi.org/10.1016/j.cimid.2007.05.001 PMid:17629560
18. Fujita, J., Ohtsuki, Y., Suemitsu, I., Yamadori, I., Shigeto, E., Shiode, M, et al. (2002). Immunohistochemical distribution of epithelioid cell, myofibroblast, and transforming growth factor-beta1 in the granuloma caused by Mycobacterium avium intracellulare complex pulmonary infection. Microbiol Immunol. 46(2):67–74.
https://doi.org/10.1111/j.1348-0421.2002.|atb02660.x PMid:11939580
19. Kaarteenaho-Wiik, R., Sademies, O., Pääkkö, P., Risteli, J., Soini, Y. (2007). Extracellular matrix proteins and myofibroblasts in granulomas of sarcoidosis, atypical mycobacteriosis, and tuberculosis of the lung. Hum Pathol. 38(1):147–153. https://doi.org/10.1016/j.humpath.2006.07.001 PMid:16996565
20. Polaček, V., Vidanović, D., Vasković, N., Knežević, M., Gledić, D., Aleksić-Kovačević, S., et al. (2010). Distribution of myofibroblasts, transforming growth factor-β1 and transforming growth factor-β1 receptor-I in granulomas caused by Mycobacterium avium complex in pigs. J Comp Pathol. 143(4):326. https://doi.org/10.1016/j.jcpa.2010.09.051
21. Cvetkovikj, I., Mrenoshki, S., Krstevski, K., Djadjovski, I., Angjelovski, B., Popova, Z., et al. (2017). Bovine tuberculosis in the republic of Macedonia:Postmortem, microbiological and molecular study in slaughtered reactor cattle. Mac Vet Rev. 40(1):43–52. https://doi.org/10.1515/macvetrev-2016-0097


Copyright

©2017 Polaček V. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Acknowledgement

We thank Tone Bjordal Johansen and Angelika Agdeinstain from the Norwegian Veterinary Institute for their help with real time PCR diagnostics and Danka Vukasinovic for helping translate the article. The research was partly conducted within the project of the Ministry of Education and Science of the Republic of Serbia, under the registration number TR31071, TR31084 and III46002. 

Conflict of Interest Statement 

The authors declared that they have no potential conflict of interest with respect to the authorship and/or publication of this article.

Citation Information

Macedonian Veterinary Review. Volume 41, Issue 1, Pages 47-53, p-ISSN 1409-7621, e-ISSN 1857-7415, DOI:  10.1515/macvetrev-2017-0030, 2018