Original Scientific Article
Pulsed-field gel electrophoresis used for typing of extended-spectrum-β-lactamases- producing Escherichia coli Isolated from infant ҆ s respiratory and digestive system
Gorica Popova * ,
Dean Jankuloski ,
Benjamin Felix ,
Katerina Boskovska ,
Biljana Stojanovska - Dimzovska ,
Velibor Tasic ,
Katerina Blagoevska

Mac Vet Rev 2018; 41 (2): 133 - 141

10.2478/macvetrev-2018-0016

Received: 14 September 2017

Received in revised form: 05 January 2018

Accepted: 22 January 2018

Available Online First: 31 May 2018

Published on: 15 October 2018

Correspondence: Gorica Popova, gorica.popova@yahoo.com
PDF HTML

Abstract

Escherichia coli infections are becoming increasingly difficult to treat because of emerging antimicrobial resistance, mostly to expanded-spectrum cephalosporins, due to the production of extended-spectrum β-lactamases (ESBLs).Despite extensive studies of ESBL- producing E.coli in adult patients, there is a lack of information about the epidemiology and spread of ESBL organisms in pediatric population. The aim of this study was to examine the gastrointestinal tract as an endogenous reservoir for the respiratory tract colonization with ESBL- E. coli in children, hospitalized because of the severity of the respiratory illness. The study group consists of 40 children with ESBL-producing E. coli strains isolated from the sputum and from the rectal samples. A control group of 15 E. coli isolated from rectal swabs of healthy children were included in the analysis. The comparison of the strains was done by using antimicrobial susceptibility patterns of the stains, and pulsed field gel electrophoresis was performed for molecular typing, using XbaI digestion. 90% of the compared pairs of strains in the study group were with identical antimicrobial susceptibility patterns and indistinguishable in 79.2% by the obtained PFGE – profiles.33.3% (5/15) of confirmed E. coli strains from the control group were found to be ESBL – producers. Resulting band profiles of all isolates demonstrated presence of 12 pulsotypes, with 100% similarity within the pulsotypes. Although, some isolates obtained from different patients were genetically indistinguishable, these strains were not hospital acquired, as none of the patients satisfied the criteria for hospital acquired pneumonia, and there was a lack of an obvious transmission chain. All ESBL –E. coli isolated from sputum in clinical cases were obtained from patients under the age of one. According to the resistance profile of the compared pairs and the PFGE comparison of all isolates, it can be concluded that the gastrointestinal tract is the main reservoir of ESBL-E. coli. Small age in infants is a risk factor for translocation of bacteria, enabling the colonization of the respiratory tract.

Keywords: ESBL-producing Escherichia coli, resistance profile, GUT colonization, PFGE- typing


References

1. Akil, I., Yilmaz, O., Kuruepe, S., Deqwrli, K., Kavukcu, S. (2006). Influence of oral intake of Saccharomyces boulardii on Escherichia coli in enteric flora. Pediatr Nephrol. 21, 807-810. https://doi.org/10.1007/s00467-006-0088-4 PMid:16703374
2. Backhed, F., Ley, R.E., Sonnenburg, J.L., Peterson, D.A., Gordon, J.I. (2005). Host bacterial mutualism in the human intestine. Science 307, 1915-1920. https://doi.org/10.1126/science.1104816 PMid:15790844
3. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464 (7285):59-65. https://doi.org/10.1038/nature08821 PMid:20203603 PMCid:PMC3779803
4. Penders, J., Thijs, C., Vink, C., Stelma, F.F., Snijders, B., Kummeling, I., van den Brandt, P.A., Stobberingh, E.E. (2006). Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118 (2):511-521. https://doi.org/10.1542/peds.2005-2824 PMid:16882802
5. Jernberg, C., Lofmark, S., Edlund, C., Jansson, J.K. (2010). Long –term ecological impacts of antibiotic administration on the human intestinal microbiota. Microbiology 156, 3216-3223. https://doi.org/10.1099/mic.0.040618-0 PMid:20705661
6. de la Cochetiere, M.F., Durand, T., Lepage, P., Bourreille, A., Galmiche, J.P., Dore, J. (2005). Resilience of the dominant human fecal microbiota upon short-course antibiotic challenge. J Clin Microbiol 43, 5588-5592. https://doi.org/10.1128/JCM.43.11.5588-5592.2005 PMid:16272491 PMCid:PMC12≊7
7. Perez-Cobas, A.E., Gosalbes, M.J., Friedrichs, A., Knecht, H., Artacho, A., Eismann, K., et al. (2013). Gut microbiota disturbance during antibiotic therapy:a multi-omic approach. Gut 62, 1591-1601. https://doi.org/10.1136/gutjnl-2012-303184 PMid:23236009 PMCid:PMC3812899
8. Paterson, L.D., Bonomo, A.R. (2005). Extended spectrum beta lactamases:a clinical update. Clin Microbiol Rev. 18(4):657-686. https://doi.org/10.1128/CMR.18.4.657-686.2005 PMid:16223952 PMCid:PMC1265908
9. Bush, K., Jacoby, G.A. (2010). Update functional classification sheme of β–lactamases. Antimicrob Agents Chemother. 54(3):969-976. https://doi.org/10.1128/AAC.01009-09 PMid:19995920 PMCid:PMC2825993
10. Philippon, A., Labia, R., Jacoby, G. (1989). Extended-spectrum β-lactamases.Antimicrob Agents Chemother. 33, 1131–1136. https://doi.org/10.1128/AAC.33.8.1131
11. Srivastava, A., Singhal, N., Goel, M., Virdi, J.S., Kumar, M. (2014). CBMAR:a comprehensive β-lactamase molecular annotation resource. Database (Oxford). 2014:bau111 https://doi.org/10.1093/database/bau111 PMid:25475113 PMCid:PMC4255060
12. Bonnet, R. (2004). Growing group of extended spectrum:the CTX-M enzymes. Antimicrob Agent Chemother. 48, 1-14 https://doi.org/10.1128/AAC.48.1.1-14.2004 PMCid:PMC310187
13. Lewis, J.S., Herrera, M., Wickes, B., Patterson, J.E., Jorgensen, J.H. (2007). First report of the emergence of CTX-M-type extended-spectrum β-lactamases (ESBLs) as the predominant ESBL isolated in a U.S. Health Care System. Antimicrob Agents Chemother. 51(11):4015-4021. https://doi.org/10.1128/AAC.00576-07 PMid:17724160 PMCid:PMC2151438
14. Alobwede, I., Mzali, F.H., Livermore, D.M., Hentige, J., Todd, N., Hawkey, P.M. (2003). CTX-M extended-spectrum beta-lactamases arrives in UK. J Antimicrob Chemother. 51. 470-471. https://doi.org/10.1093/jac/dkg096 PMid:12562729
15. Mendonça, N., Ferreira, E., Louro, D., ARSIP Participants, Caniça, M. (2009). Molecular epidemiology and antimicrobial susceptibility of extended- and broad-spectrum beta-lactamase-producing Klebsiella pneumoniae isolated in Portugal. Int J Antimicrob Agents. 34(1):29-37. https://doi.org/10.1016/j.ijantimicag.2008.11.014 PMid:19272757
16. Kiratisin, P., Apisarnthanarak, A., Laesripa, C., Saifon, P. (2008). Molecular characterization and epidemiology of extended-spectrum-beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates causing health care-associated infection in Thailand, where the CTX-M family is endemic. Antimicrob Agents Chemother. 52(8):2818-2824. https://doi.org/10.1128/AAC.00171-08 PMid:18505851 PMCid:PMC2493136
17. The European Committee on Antimicrobial Susceptibility Testing. Breakpoint tables for interpretation of MICs and zone diameters. Version 4.0, 2014. http://www.eucast.org.
18. The EUCAST subcommittee for detection of resistance mechanisms and specific resistance of clinical and/or epidemiological importance. EUCAST guidelines for detection of resistance mechanisms and specific resistances of clinical and/or epidemiological importance.Version 1.0, 2013. http://www.eucast.org.
19. Ribot, E.M., Fair, M.A., Gautom, R., Cameron, D.N., Hunter, S.B., Swaminathan, B., Barrett, T.J. (2006). Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog Dis. 3(1):59-67. https://doi.org/10.1089/fpd.2006.3.59 PMid:16602980
20. Caprioli, A., Maugliani, A., Michelacci, V., Morabito, S. (2014). Molecular typing of Verocytotoxin - producing E. coli (VTEC) strains isolated from food, feed and animals :state of play and standard operating procedures for pulsed field gel electrophoresis (PFGE) typing, profiles interpretation and curation. EFSA journal EN704, 55.
21. Barrett, T.J., Gerner-Smidt, P., Swaminathan, B. (2006). Interpretation of pulsed-field gel electrophoresis patterns in foodborne disease investigations and surveillance. Foodborne Pathog Dis. 3(1):20-31. https://doi.org/10.1089/fpd.2006.3.20 PMid:16602976
22. Peters, T.M., Maguire, C., Threlfall, E.J., Fisher, I.S., Gill, N., Gatto, A.J. (2003). The Salm-gene project - a European collaboration for DNA fingerprinting for food-related salmonellosis. Euro Surveill. 8, 46-50. https://doi.org/10.2807/esm.08.02.00401-en PMid:12631975
23. Winokur, P.L., Cantón, R., Casellas, J.M., Legakis, N. (2001). Variations in the prevalence of strains expressing an extended-spectrum β-lactamase phenotype and characterization of isolates from Europe, the Americas, and the Western Pacific region. Clin Infect Dis. 32, 94–103. https://doi.org/10.1086/320182 PMid:11320450
24. Pitout, J.D., Hanson, N.D., Church, D.L., Laupland, K.B. (2004). Population-based laboratory surveillance for Escherichia coli-producing extended-spectrum β-lactamases:importance of community isolates withblaCTX-M genes. Clin Infect Dis. 38, 1736–1741. https://doi.org/10.1086/421094 PMid:15227620
25. Ben-Ami, R., Schwaber, M.J., Navon-Venezia, S., Schwartz, D., Giladi, M., Chmelnitsky, I., Leavitt, A., Carmeli, Y. (2006). Influx of extended-spectrum β-lactamase-producing Enterobacteriaceae into the hospital. Clin Infect Dis. 42, 925–934. https://doi.org/10.1086/500936 PMid:16511754
26. Chandramohan, L., Revell, P.A. (2012). Prevalence and molecular characterization of extended-spectrum-β-lactamase-producing enterobacteriaceae in a pediatric patient population. Antimicrob Agents Chemother. 56(9):4765-4770. https://doi.org/10.1128/AAC.00666-12 PMid:22733062 PMCid:PMC3421901
27. Mitchella, D.J., Mc Clurea, B.G., Tubmanb, T.R.J. (2001). Simultaneous monitoring of gastric and oesophageal pH reveals limitations of conventional oesophageal pH monitoring in milk fed infants. Arch Dis Child. 84, 273-276. https://doi.org/10.1136/adc.84.3.273 PMCid:PMC1718697
28. Orozco-Levi, M., Torres, A., Ferrer, M., Piera, C., El-Ebiary, M., de la Bellacasa, J.P., Rodriguez-Roisin, R. (1995). Semirecumbent position protects from pulmonary aspiration but not completely from gastroesophageal re- flux in mechanically ventilated patients. Am J Respir Crit Care Med. 152, 1387–1390. https://doi.org/10.1164/ajrccm.152.4.7551400 PMid:7551400
29. Davis, K.J., Johannigman, J.A., Campbell, R.S., Marraccini, A., Luchette, F.A., Frame, S.B., Branson, R.D. (2001). The acute effects of body position strategies and respiratory therapy in paralyzed patients with acute lung injury. Crit Care. 5, 81–87. https://doi.org/10.1186/cc991 PMid:11299066 PMCid:PMC30713
30. Drakulovic, M.B., Torres, A., Bauer, T.T., Nicolas, J.M., Nogue, S., Ferrer, M. (1999). Supine body position as a risk factor for nosocomial pneumonia in mechanically ventilated patients:a randomised trial. Lancet 354, 1851–1858. https://doi.org/10.1016/S0140-6736(98)12251-1
31. Pingleton, S.K., Hinthorn, D.R., Liu, C. (1986). Enteral nutrition in patients receiving mechanical ventilation:multiple sources of tracheal colonization include the stomach. Am J Med. 80, 827–832. https://doi.org/10.1016/0002-9343(86)90623-6
32. Tablan, O.C., Anderson, L.J., Besser, R., Bridges, C., Hajjeh, R., Healthcare Infection Control Practices Advisory Committee, Centers for Disease Control and Prevention. (2004). Guidelines for preventing health-care–associated pneumonia, 2003:recommendations of the CDC and the Healthcare Infection Control Practices Advisory Committee. MMWR Recomm Rep. 53(RR-3):1–36. PMid:15048056
33. Prosperi, M., Veras, N., Azarian, T., Rathore, M., Nolan, D., Rand, K., Cook, R.L., Johnson, J., Morris, J.G., Salemil, M. (2013). Molecular epidemiology of community-associated methicillin-resistant Staphylococcus aureus in the genomic era:a cross-sectional study. Sci Rep. 3, 1902 https://doi.org/10.1038/srep01902 PMid:23712667 PMCid:PMC3664956
34. Tschudin-Sutter, S., Frei, R., Dangel, M., Strauden A., Widmer, A.T. (2012). Rate of Transmission of extended-spectrum beta-lactamase–producing enterobacteriaceae without contact isolation. Clin Infect Dis. 55 (11):1505-1511. https://doi.org/10.1093/cid/cis770 PMid:22955436
35. Jain, R., Kralovic, S.M., Evans, M.E., Ambrose, M., Simbartl, L.A., Obrosky, D.S., Render, M.L., Freyberg, R.W., Jarnigan, J.A., Muder, R.R., Miller, L.J., Roselle, G.A. (2011). Veterans affairs initiative to prevent methicillin-resistant Staphylococcus aureus infections. N Engl J Med. 364:1419-30. https://doi.org/10.1056/NEJMoa1007474 PMid:2148∼
36. Ostrowsky, B.E., Trick, W.E., Sohn, A.H., Quirk, S.B., Holt, S., Carson, L.A., Hill, B.C., Arduino, M.J., Kuehnert, M.J., Jarvis, W.R. (2001). Control of vancomycin-resistant enterococcus in health care facilities in a region. N Engl J Med. 344:1427-1433. https://doi.org/10.1056/NEJM200105103441903 PMid:11346807


Copyright 

©2018 Popova G. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Acknowledgement

The authors acknowledge the medical staff at the Institute for Respiratory Diseases in Children-Skopje for providing medical records for the patients in the study group. Special thanks go to Dr. Sanja Cileska for her help in collecting biological specimens from the participants in the control group.

Conflict of Interest Statement

The authors declared that they have no potential conflict of interest with respect to the authorship and/or publication of this article.

Citation Information

Macedonian Veterinary Review. Volume 41, Issue 2, Pages 133-141, p-ISSN 1409-7621, e-ISSN 1857-7415, DOI: 10.2478/macvetrev-2018-0016, 2018