Original Scientific Article
Hematological and oxidative status parameters in domestic dogs infested naturally by Rhipicephalus sp.
Rosa Kebbi,
Omar Besseboua,
Melaaz Belhadj-Kebbi,
Lila Hassissen,
Abdelhanine Ayad*

Mac Vet Rev 2020; 43 (2): i - viii

10.2478/macvetrev-2020-0022

Received: 20 February 2020

Received in revised form: 27 May 2020

Accepted: 09 June 2020

Available Online First: 30 July 2020

Published on: 15 October 2020

Correspondence: Abdelhanine Ayad, hanine06@gmail.com

Abstract

The present study was aimed to evaluate hematological and oxidative stress parameters in domestic dogs infested naturally (n=10) by Rhipicephalus sp. to compare with non-infested dogs (n=10). All blood samples were collected from brachial vein into tubes EDTA for the hematological analysis such as red blood cells (RBCs), white blood cells (WBCs), hemoglobin (HGB) and platelets (PLT). Serum was rapidly separated after centrifugation and stored at -20 °C until it was used for malondialdehyde (MDA) and 2,2’-Azinobis-(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) inhibition measurements. HGB in non-infested dogs was significantly higher than in infested dogs (P<0.05). There was not a significant difference in RBCs, WBCs and PLT between bothgroups (P>0.05). The mean of MDA concentration was high in infested dogs. (0.92±0.62 nmol/ml) compared to non-infested dogs (0.75±0.25 nmol/ml). On the other hand, the percentage of ABTS inhibition was similar in both groups (P=0.71). High tick number seems significantly affected WBCs (P<0.0001) and HGB (P<0.001) in infested dogs. Concerning oxidative status, there is no significant differences (P>0.05) between low and high infested dogs neither in the amount of MDA nor in the ABTS inhibition. In conclusion, infested dogs induce RBCs alterations, which coincides with the oxidative damage, as evidenced by MDA serum levels. Also, there was a relationship between the tick number in infested dogs and the hematological parameters.

Keywords: Rhipicephalus sp., hematological parameters, oxidative status, dogs


References

  1. Laamri, M., El Kharrim, K., Boukbal, M., Belghyti, D., Mrifag, R. (2012). Dynamique des populations de tiques parasites des bovins de la région du Gharb au Maroc. Rev Elev Med Vet Pays Trop. 65(3-4): 57. https://doi.org/10.19182/remvt.10123
  2. Gray, J., Dantas-Torres, F., Estrada-Pena, A., Levin, M. (2013). Systematics and ecology of the brown dog tick, Rhipicephalus sanguineus. Ticks. Tick-Borne Dis. 4(3): 171-180. https://doi.org/10.1016/j.ttbdis.2012.12.003 PMid:23415851      
  3. Taylor, M., Mediannikov, O., Raoult, D., Greub, G. (2012). Endosymbiotic bacteria associated with nematodes, ticks and amoebae. FEMS Immunol Med Microbiol. 64(1): 21-31.
  4. Kebbi, R., Nait-Mouloud, M., Hassissen, L., Ayad, A. (2019). Seasonal activity of ticks infesting domestic dogs in Bejaia province, Northern Algeria. Onderstepoort J Vet Res. 86(1): e1-e6. https://doi.org/10.4102/ojvr.v86i1.1755 PMid:31714138 PMCid:PMC6852545     
  5. Smith, F. D., Wall, L. E. R. (2013). Prevalence of Babesia and Anaplasma in ticks infesting dogs in Great Britain. Vet parasitol. 198(1-2): 18-23. https://doi.org/10.1016/j.vetpar.2013.08.026 PMid:24055106
  6. Edlow, J.A., McGillicuddy, D.C. (2008). Tick paralysis. Inf Dis Clin North Am. 22(3): 397-413. https://doi.org/10.1016/j.idc.2008.03.005 PMid:18755381           
  7. Sorg, O. (2004). Oxidative stress: a theoretical model or a biological reality? C R Biol. 327(7): 649-662. https://doi.org/10.1016/j.crvi.2004.05.007 PMid:15344815       
  8. Sordillo, L.M., Aitken, S.L. (2009). Impact of oxidative stress on the health and immune function of dairy cattle. Vet Immunol Immunopathol. 128(1-3): 104-109. https://doi.org/10.1016/j.vetimm.2008.10.305 PMid:19027173  
  9. Codoñer-Franch, P., Valls-Bellés, V., Arilla-Codoñer, A., Alonso-Iglesias, E. (2011). Oxidant mechanisms in childhood obesity: the link between inflammation and oxidative stress. Transl Res. 158(6): 369-384. https://doi.org/10.1016/j.trsl.2011.08.004 PMid:22061044               
  10. Abd Ellah, M.R. (2010). Involvement of free radicals in animal diseases. Comp Clin Pathol. 19, 615-619. https://doi.org/10.1007/s00580-010-1016-3
  11. Repetto, M., Semprine, J., Boveris, A. (2012). Lipid peroxidation: chemical mechanism, biological implications and analytical determination. pp. 3-30. https://doi.org/10.5772/45943
  12. Samadieh, H., Mohammadi, G.R., Maleki, M., Borji, H., Azizzadeh, M., Heidarpour, M. (2017). Relationships between oxidative stress, liver, and erythrocyte injury, trace elements and parasite burden in sheep naturally infected with Dicrocoelium dendriticum. Iran J Parasitol. 12(1): 46-55.     
  13. Al-Hosary, A.A.T., Abd Ellah, M.R., Salah El-Din Ahmed, L. (2018). Evaluation of oxidative stress in sheep infested with ticks and concurrent diagnosis of Theileriosis. Asian J Anim Vet Adv. 13(3): 263-268. https://doi.org/10.3923/ajava.2018.263.268
  14. Mir, M.R., Pampori, Z.A., Iqbal, S., Bhat, J.I., Pal, M.A., Kirmani, M.A. (2008). Hemato-biochemical indices of crossbred cows during different stages of pregnancy. Int J Dairy Sci. 3(3): 154-159. https://doi.org/10.3923/ijds.2008.154.159
  15. Sarma, K., Mondal, D., Saravanan, M., Mahendran, K. (2015). Evaluation of haemato-biochemical and oxidative indices in naturally infected concomitant tick-borne intracellular diseases in dogs. Asian Pac J Trop Dis 5(1): 60-66. https://doi.org/10.1016/S2222-1808(14)60627-7
  16. Walker, A.R., Bouattour, A., Camicas, J.L., Estrada-Peña, A., Horak, I.G., Latif, A. A., Pegram, R.G., Preston, P.M. (2014). Ticks of domestic animals in Africa: A guide to identification of species. pp 3-210. University of Edinburgh Biosci Rep. Edinburgh X. 
  17. Sivoňová, M., Waczulikova, I., Kilanczyk, E., Hrnčiarová, M., Bryszewska, M., Klajnert, B., Ďuračková, Z. (2004). The effect of Pycnogenol on the erythrocyte membrane fluidity. Gen Physiol Biophys. 23(1): 39-51.    
  18. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med. 26(9-10): 1231-1237. https://doi.org/10.1016/S0891-5849(98)00315-3
  19. Geneser, F. (1986). Textbook of histology. 1st Ed Munksgaard Copenhagen, Denmark.     
  20. Ahmad, I., Gohar, A., Ahmad, N., Ahmed, M. (2003). Haematological profile in cyclic, non-cyclic and endometritic cross-bred cattle. Int J Agr Biol. 5(3): 332-334. 
  21. Lu, Y., Zhang, Y., Shan, H., Pan, Z., Li, X., Li, B., Song, W. (2009). MicroRNA-1 downregulation by propranolol in a rat model of myocardial infarction: a new mechanism for ischaemic cardioprotection. Cardiovasc Res. 84(3): 434-441. https://doi.org/10.1093/cvr/cvp232 PMid:19581315 
  22. Singh, J., Gupta, S.K., Singh, R., Hussain, S.A. (2014). Etiology and haemato-biochemical alterations in cattle of Jammu suffering from anaemia. Vet World. 7(2): 49-51. https://doi.org/10.14202/vetworld.2014.49-51
  23. Ellah, M.R.A., Al-Hosary, A.A.T. (2011). Cattle theileriosis: effect on serum constituents, erythrocytes and platelets pictures. Proceedings of the XVth International Congress of the International Society for Animal Hygiene, Vienna, Austria. Tribun EU 2. pp. 909-912.         
  24. Al-Hosary, A.A.T., Elsayed, H.K., Ahmed, L.S. (2015). Oxidative stress and hematological profile in Theileria annulata clinically infected cattle before and after treatment. Assiut Vet Med J. 61, 144.
  25. Lic, D.P., Zvorc, Z., Kucer, N. (2005). Nombre de plaquettes et volume moyen plaquettaire dans la babésiose du chien. Rev Méd Vét. 156(2): 95-98.          
  26. Kaur, D., Jaiswal, K., Mishra, S. (2017). Effect of tick infestation on haematological parameters of calves. J Entomol. 5(4): 107-111.         
  27. Pfäffle, M., Petney, T., Elgas, M., Skuballa, J., Taraschewski, H. (2009). Tick-induced blood loss leads to regenerative anaemia in the European hedgehog (Erinaceus europaeus). Parasitol. 136(4): 443-452. https://doi.org/10.1017/S0031182009005514 PMid:19216826  
  28. Tinoco-Gracia, L., Quiroz-Romero, H., Quintero-Martínez, M.T., Rentería-Evangelista, T.B., González-Medina, Y., Barreras-Serrano, A., Horni-Oshina, S., Moro, M.H., Vinasco, J. (2009). Prevalence of Rhipicephalus sanguineus ticks on dogs in a region on the Mexico-USA border. Vet Rec. 164(2): 59-61. https://doi.org/10.1136/vr.164.2.59 PMid:19136688 
  29. Thomas, L. (2007). Laboratory and Diagnosis, 7th Edn. TH-Books Verlagsgesellschaft GmbH Frankfurt/Main, Germany. [in German]  
  30. Dimri, U., Sharma, M.C., Yamdagni, A., Ranjan, R., Zama, M.M.S. (2010). Psoroptic mange infestation increases oxidative stress and decreases antioxidant status in sheep. Vet Parasitol. 168(3-4): 318-322. https://doi.org/10.1016/j.vetpar.2009.11.013 PMid:20045257              
  31. Singh, S.K., Dimri, U., Sharma, M.C., Swarup, D., Sharma, B. (2011). Determination of oxidative status and apoptosis in peripheral blood of dogs with sarcoptic mange. Vet Parasitol. 178(3-4): 330-338. https://doi.org/10.1016/j.vetpar.2011.01.036 PMid:21324594  
  32. Crnogaj, M., Cerón, J.J., Šmit, I., Kiš, I., Gotić, J., Brkljačić, M., Mrljak, V. (2017). Relation of antioxidant status at admission and disease severity and outcome in dogs naturally infected with Babesia canis canis. BMC Vet Res. 13(1): 114. https://doi.org/10.1186/s12917-017-1020-9 PMid:28438201 PMCid:PMC5402640
  33. Kiral, F., Karagenc, T., Pasa, S., Yenisey, C., Seyrek, K. (2005). Dogs with Hepatozoon canis respond to the oxidative stress by increased production of glutathione and nitric oxide. Vet Parasitol. 131(1-2): 15-21. https://doi.org/10.1016/j.vetpar.2005.04.017 PMid:15936891              
  34. Crnogaj, M., Petlevski, R., Mrljak, V., Kis, I., Torti, M., Kucer, N, Stokovic, I. (2010) Malondialdehyde levels in serum of dogs infected with Babesia canis. Vet Med. 55(4): 163-171. https://doi.org/10.17221/77/2010-VETMED
  35.  Aytekin, I., Onmaz, A.C., Ulucan, A., Alp, H. (2011). Effects of accidental ammonium Sulphate poisoning on antioxidant/oxidant status in lambs. Rev Med Vet. 162, 346-51.      
  36. Baudrimont, M., De Montaudouin, X. (2007). Evidence of an altered protective effect of metallothioneins after cadmium exposure in the digenean parasite-infected cockle (Cerastoderma edule). Parasitol. 134(2): 237-245. https://doi.org/10.1017/S0031182006001375 PMid:17032474
  37. Dautremepuits, C., Betoulle, S., Vernet, G. (2003). Stimulation of antioxidant enzymes levels in carp (Cyprinus carpio L.) infected by Ptychobothrium sp. (Cestoda). Fish Shellfish Immun. 15(5): 467-471. https://doi.org/10.1016/S1050-4648(03)00007-X
  38. Esmaeilnejad, B., Tavassoli, M., Asri-Rezaei, S., Dalir-Naghadeh, B., Malekinejad, H., Jalilzadeh-Amin, G., Hajipour, N. (2014). Evaluation of antioxidant status, oxidative stress and serum trace mineral levels associated with Babesia ovis parasitemia in sheep. Vet Parasitol. 205(1-2): 38-45. https://doi.org/10.1016/j.vetpar.2014.07.005 PMid:25086493    
  39. Ciftci, G., Ural K., Aysul, N., Cenesiz, S., Guzel, M., Pekmezci, D., Sogut, MÜ. (2014). Investigation of the 8-hydroxy-2′-deoxyguanosine, total antioxidant and nitric oxide levels of serum in dogs infected with Babesia vogeli. Vet Parasitol. 204(3-4): 388-391. https://doi.org/10.1016/j.vetpar.2014.05.002 PMid:24882747


Copyright

© 2020 Ayad A. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Conflict of Interest Statement

The authors have declared that no competing interests exist.

Citation Information

Macedonian Veterinary Review. Volume 43, Issue 2, Pages i-viii, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: 10.2478/10.2478/macvetrev-2020-0022, 2020