Original Scientific Article
Induction of twinning in noemi ewes using two protocols of a recombinant human follicle stimulating hormone versus porcine pituitary-derived FSH and their subsequent impacts on maternal hormones
Moustafa Mohamed Zeitoun*,
Mohamed Atieh Ali,
Abdulrahman Omar El-Dawas

Mac Vet Rev 2020; 43 (2): i - xiii

10.2478/macvetrev-2020-0024

Received: 29 January 2020

Received in revised form: 10 July 2020

Accepted: 13 July 2020

Available Online First: 07 August 2020

Published on: 15 October 2020

Correspondence: Moustafa Mohamed Zeitoun, mmzeitoun@yahoo.com

Abstract

Twinning induction of single-bearing Noemi ewes is an important avenue to maximize the economic feasibility of sheep production. Sixty Noemi ewes were used and randomly assigned to six treatment groups (n=10/group).Two sources of FSH [i.e., porcine (P) vs. human (H)] were given as a single dose or in six doses. The control 1 group was given a single dose of saline (C1), while the control 2 group was given six doses of saline (C6). Ewes in group 3 (P1) were given a single dose of p-FSH, in group 4 six doses of p-FSH (P6), in group 5 a single dose of h-FSH (H1), and in group 6 six doses of h-FSH (H6). The ewes were inserted with CIDR for 10 days with FSH given on day 8. A fertile ram was used at the onset of estrus. Blood samples were collected for hormone analyses. The time between CIDR removal and onset of estrus (63, 38 and 26 hrs. in C, P, and H, respectively) was shortened by FSH administration. FSH increased the incidence of twinning, however single dose resulted in more stillbirths and mortalities. The neonatal survival rate decreased in the P1 (40%) compared to the P6 (65%) treatments. Both sources of FSH raised progesterone and estradiol 17-β compared to the controls. Contrariwise, both h- and p-FSH reduced T4; however, h-but not p-FSH raised T3. In conclusion, using rh-FSH at six descending doses of a total 180 IU in Noemi ewes produced two viable neonates. Moreover, the exogenous FSH raised the sex hormones and T3 in the ewes.

Keywords: ewe, estrogen, FSH, progesterone, T3, twinning


References

  1. Puri-Mirza, A., Number of farm sheep in Saudi Arabia from 2014 to 2017 [Internet]. Statista; c2019[cited 2020 August 01]. Available from: https://www.statista.com/statistics/976230/saudiarabia-numberof-sheep-in-farms/
  2. Galal, S., Gürsoy, O., Shaat, I. (2008). Awassi sheep as a genetic resource and efforts for their genetic improvement -A review. Small Ruminant Res. 79(2-3): 99-108. https://doi.org/10.1016/j.smallrumres.2008.07.018
  3. Ahmadi, E., Mirzaei, A. (2016). High twin lambing rate of synchronized ewes using progestagen combined with the gonadotropins injection in breeding season. Revue Med. Vet. 167(1-2): 28-32.
  4. Mohamed, Ali, M., Zeitoun, M.M. (2016). Effectiveness of a recombinant human follicle stimulating hormone on the ovarian follicles, peripheral progesterone, estradiol-17β, and pregnancy rate of dairy cows. Vet. World. 9(7): 699-704. https://doi.org/10.14202/vetworld.2016.699-704 PMid:27536029 PMCid:PMC4983119
  5. Aköz, M., Bülbül, B., Ataman, M. B., Dere, S. (2006). Induction of multiple births in Akkaraman crossbred sheep synchronized with short duration and different doses of progesterone treatment combined with PMSG outside the breeding season. Bull Vet Inst Pulawy 50, 97-100.              
  6. Özbey, O., Tatli P. (2001). The effects of estrus synchronization and flushing on reproduction of Awassi ewes. J Fac Vet Med. 20, 109-115.            
  7. Simoni, M., Gromoll, J., Dworniczak, B. Rolf, C., Abshagen, K., Kamischke, A., et al. (1997). Screening for deletions of the Y chromosome involving the DAZ (Deleted in Azoospermia) gene in azoospermia and severe oligozoospermia. Fertil Steril. 67(3): 542-547. https://doi.org/10.1016/S0015-0282(97)80083-0
  8. Wu, W., Hanikezi, H., Yang, M., Gong, P., Wang, F., Tian, Y., et al. (2011). Effect of two follicle stimulating hormone (FSH) preparations and simplified superovulatory treatments on superovulatory response in Xinji fine-wool sheep. Afr J Biotechnol. 10(70): 15834-15837. https://doi.org/10.5897/AJB11.1927
  9. Bartalena L, Bogazzi F, Pinchera A. (1991). Thyroid function tests diagnostic protocols for investigation of thyroid dysfunction. Ann Ist Super Sanita 27(3): 531-539.              
  10. Simersky, R., Swaczynova, J., Morris, D.A., Franek, M., Strand, M. (2007). Development of an ELISA-based kit for the on-farm determination of progesterone in milk. Vet Med. 52, 19-28. https://doi.org/10.17221/2009-VETMED
  11. Ratcliff, W.A., Carter, G.D., Dowsett, M., Hillier, S.G., Middle, J.G., Reed, M.J. (1988). Estradiol assays: applications and guidelines for the provision of clinical biochemistry service. Ann Clin Biochem. 25(5): 466-483. https://doi.org/10.1177/000456328802500502PMid:3069043
  12. SAS (2000). Statistical analysis system user's guide (8th ed.), SAS Institute, Cary NC, USA.
  13. Steel, R.G.D., Torrie, J.H. (1980). Principles andprocedures of statistics: a biometrical approach. 2ndEdition, McGraw-Hill Book Company, New York.  
  14. Rosati, A., Mousa, E., Van Vleck, L.D., Young, L.D. (2002). Genetic parameters of reproductive traits in sheep. Small Ruminant Res. 43(1): 65-74. https://doi.org/10.1016/S0921-4488(01)00256-5
  15. McNatty, K.P., Lun, S., Heath, D.A., Hudson, N.L., O'Keeffe, L.E., Henderson, K.M. (1989). Binding characteristics of 125I-labelled human FSH to homozygous, heterozygous or non-carriers of a major gene (s) influencing their ovulation rate. J Reprod Fertil. 86(1): 27-38. https://doi.org/10.1530/jrf.0.0860027 PMid:2502619     
  16. Panyaboriban, S., Suwimonteerabutr, J., Swangchan-Uthai, T., Tharasanit, T., Suthikrai, W., Suadsong, S.,Techakumphu, M. (2018). A simplified superovulation protocol using split-single administration of Folltropin®-V in hyaluronan: application to purebred sheep. Vet. Med. 63(07): 321-328. https://doi.org/10.17221/52/2016-VETMED
  17. Larfi, M., Ponsart, C., Nibart, M., Durand, M., Morel, A., Jeanguyot, N., et al. (2002). Influence of CIDR treatment during superovulation on embryo production and hormonal pattern in cattle. Theriogenology 58(6): 1141-1151. https://doi.org/10.1016/S0093-691X(02)00637-4
  18. Husein, M.Q., Kridli, R.T. (2002). Reproductive responses of Awassi ewes treated with either naturally occurring progesterone or synthetic progestagen. Asian-Australas J Anim Sci.15(9):1257-1262. https://doi.org/10.5713/ajas.2002.1257
  19. Gootwine, E., Spencer, T.E., Bazer, F.W. (2007). Litter size-dependent intrauterine growth restriction in sheep. Animal 1(4): 547-564. https://doi.org/10.1017/S1751731107691897 PMid:22444412 
  20. Sharma, D., Shastri, S., Sharma, P. (2016). Intrauterine growth restriction: Antenatal and postnatal aspects. Clin Med Insights Pediatr.10, 67-83. https://doi.org/10.4137/CMPed.S40070 PMid:27441006 PMCid:PMC4946587
  21. Barry, J.S., Anthony, R.V. (2008). The pregnant sheep as a model for human pregnancy.Theriogenology 69(1): 55-67. https://doi.org/10.1016/j.theriogenology.2007.09.021 PMid:17976713 PMCid:PMC2262949
  22. Poore, K.R., Boullin, J.P., Cleal, J.K., Newman, J.P., Noakes, D.E., Hanson, M.A., Green, L.R. (2010). Sex- and age-specific effects of nutrition in early gestation and early postnatal life on hypothalamo-pituitary-adrenal axis and sympatho-adrenal function in adult sheep. J.Physiol. 588(Pt 12): 2219-2237. https://doi.org/10.1113/jphysiol.2010.187682 PMid:20421287 PMCid:PMC2911222
  23. Wu, G., Bazer, F.W., Wallace, J.M., Spencer, T.E. (2006). Intrauterine growth retardation: implications for the animal sciences. J Anim Sci. 84(9): 2316-2337. https://doi.org/10.2527/jas.2006-156 PMid:16908634    
  24. Naaktgeboren, C., Stegeman, J.H.J. (1969). Investigation on the influence of the uterus and the placenta on fetal growth and birth weight, under special consideration of sheep. Z. Tierzuecht Zuechtungsboil. 85, 245-290. https://doi.org/10.1111/j.1439-0388.1968.tb00311.x
  25. Greenwood, P.L., Slepetis, R.M., Bell, A.W. (2000). Influences on fetal and placental weights during mid to late gestation in prolific ewes well-nourished throughout pregnancy. Reprod Fertil Develop. 12(3-4): 149-156. https://doi.org/10.1071/RD00053 PMid:11302424     
  26. Krause, B.J., Hanson, M.A., Casanello, P. (2011). Role of nitric oxide in placental vascular development and function. Placenta 32(11): 797-805. https://doi.org/10.1016/j.placenta.2011.06.025 PMid:21798594 PMCid:PMC3218217
  27. Zeitoun, M., Al-Ghoneim, A., Al-Sobayil, K., Al-Dobaib, S. (2016). L-arginine modulates maternal hormonal profiles and neonatal traits during two stages of pregnancy in sheep. OJAS 6(2): 95-104. https://doi.org/10.4236/ojas.2016.62012
  28. Abdelsalam, M.M. Zeitoun, M.M., Ateah, M.A., Al-Hassan, A., Abdel-Salam, A.M. (2014). Impact of probiotic fermented milk, palm date extract and their mixture supplementation on neonatal traits and hematological parameters of late pregnant Najdi ewes. Int J Biol Chem. 8(1): 37-47. https://doi.org/10.3923/ijbc.2014.37.47
  29. O'Shaughnessy, P.J., McLelland, D., McBride, M.W. (1997). Regulation of luteinizing hormone-receptor and folliclestimulating hormone-receptor messenger ribonucleic acid levels during development in the neonatal mouse ovary. Biol Reprod. 57(3): 602-608. https://doi.org/10.1095/biolreprod57.3.602 PMid:9282997
  30. François, C.M., Petit, F., Giton, F., Gougeon, A., Ravel, C., Magre, S., Cohen-Tannoudji, J., Guigon, C.J. (2017). A novel action of follicle stimulating hormone in the ovary promotes estradiol production without inducing excessive follicular growth before puberty. Sci Rep. 7, 1-12. https://doi.org/10.1038/srep46222 PMid:28397811 PMCid:PMC5387682
  31. ASRM Practice Committee: American Society for Reproductive Medicine Birmingham, Alabama [Internet]. Gonadotropin preparations: past, present, and future perspectives. [Fertil Steril. 90: S13-20. November 2008]. https://www.fertstert.org/article/S0015-0282(08)03368-2/fulltext https://doi.org/10.1016/j.fertnstert.2008.08.031 PMid:19007609             
  32. Howles, C.M. (1996). Genetic engineering of human FSH (GONAL-F). Human Reprod Update 2(2): 172-191. https://doi.org/10.1093/humupd/2.2.172 PMid:9079412  
  33. Huszenicza, G., Kulscar, M., Rudas, P. (2002). Clinical endocrinology of thyroid gland functions in ruminants. Vet Med Czech. 47(7): 199-210. https://doi.org/10.17221/5824-VETMED
  34. Hayashi, M., Maruo, T., Matsuo, H., Mochizuki, M. (1985). The bio-cellular effect of thyroid hormone on functional differentiation of porcine granulosa cells in culture. Nihon Naibunpi Gakkai Zasshi 61(10): 1189-1196. https://doi.org/10.1507/endocrine1927.61.10_1189 PMid:3002876   
  35. Maruo, T., Hayashi, M., Matsuo, H., Yamamoto, T., Okada, H., Mochizuki, M. (1987). The role of thyroid hormone as a biological amplifier of the actions of follicle stimulating hormone in the functional differ¬entiation of cultured porcine granulosa cells. Endocrinology 121(4): 1233-1241. https://doi.org/10.1210/endo-121-4-1233 PMid:3115761 
  36. Wakim, A.N., Polizotto, S.L., Burholt, D.R. (1995). Influence of thyroxin on human granulosa cell steroidogenesis in vitro. J Assist Reprod Genet. 12(4): 274-277. https://doi.org/10.1007/BF02212931 PMid:7580025       
  37. Wakim, A.N., Polizotto, S.L., Burholt, D.R. (1995). Augmentation by thyroxin of human granulosa cells gonadotropin-induced steroidogenesis. Hum Reprod. 10(11): 2845-2848. https://doi.org/10.1093/oxfordjournals.humrep.a135805 PMid:8747030               
  38. Spicer, L.J., Alonso, J., Chamberlain, C. S. (2001). Effects of thyroid hormones on bovine granulosa and thecal cell function in vitro: dependence on insulin and gonadotropins. J Dairy Sci. 84(5): 1069-1076. https://doi.org/10.3168/jds.S0022-0302(01)74567-5


Copyright

© 2020 Zeitoun M. M. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Conflict of Interest Statement

The authors have declared that no competing interests exist.

Citation Information

Macedonian Veterinary Review. Volume 43, Issue 2, Pages i-xiii, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: 10.2478/macvetrev-2020-0024, 2020