Original Scientific Article
Characteristics of Staphylococcus aureus isolated from a case of foodborne outbreak in Bulgaria
Teodora Ivanova ,
Gergana Krumova-Valcheva ,
Gergana Mateva ,
Hristo Daskalov *

Mac Vet Rev 2020; 43 (2): 151 - 159

10.2478/macvetrev-2020-0026

Received: 14 May 2020

Received in revised form: 24 July 2020

Accepted: 31 July 2020

Available Online First: 11 September 2020

Published on: 15 October 2020

Correspondence: Hristo Daskalov, hdaskal@bfsa.bg
PDF HTML

Abstract

This paper presents an outbreak provoked by methicillin-resistant strains of coagulase-positive S. aureus (CPS), produced staphylococcal enterotoxins (se) in pig meatballs and potato salad consumed from 70 people in the village Mamarchevo, Bulgaria. Eighteen women aged 50 to 70 years, and two children aged 4 and 5 years have demonstrated a severe malaise with vomiting and indigestion. Two food samples and isolates of CPS were received in the laboratory of Bulgarian Food Safety Agency. Both samples were found to have a high level of CPS. The level of S. aureus contamination in the potato salad was 8.3 logs CFU/g and 7.7 logs CFU/g in roasted meatballs, which was a significant reason to doubt the production of the toxin. The samples were analyzed according to the European Screening Method v5 using mini VIDAS SET2. The results showed a presence of staphylococcal enterotoxin (TV 2.67 for meatballs and TV 3.27 for potato salad), which was the reason for the ensuing food intoxication. EURL CPS applying quantitative indirect sandwich-type ELISA confirmed the presence of sea, sec and sed in the potato salad and sea and sed in the roasted meatballs. Two CPS isolates were confirmed as S. aureus by a species-specific 23S rRNA targeted PCR test. Real-time PCR method detected sea, sed, seg, sei, sej, and ser genes in S. aureus strains, found in both matrixes. Multiplex PCR method proved the existence of the mecA gene in both S. aureus strains. Resistance to cefoxitin (>16 mg/L), penicillin (>2 mg/L), kanamycin (64 mg/L) and sulfamethoxazole (>512 mg/L) was found.

Keywords: methicillin-resistant Staphylococcus aureus, staphylococcal enterotoxins, staphylococcal poisoning, multiple pathogenicity


References

  1. Wong, A.C.L., Bergdoll, M.S. (2002). Staphylococcal food poisoning. In: D.O. Cliver and H.P. Riemann (Eds.), Foodborne Diseases 2nd ed. (pp. 231 - 248). Academic Press, USA.
  2. Jablonsky, L.M., Bohach, A. (2001). Staphylococcus aureus. In: M.P. Doyle, L.R. Beuchat and Th. J. Montville (Eds.), Food microbiology. Fundamentals and frontiers. 2nd ed. (pp. 411 - 434). ASM Press, Washington, D.C.
  3. Bergdoll, M.S., Wong, A.C.L. (2006). Staphylococcal intoxications. In: Riemann H.P. and Cliver D.O. (Eds.), Foodborne infection and intoxications. 3rd ed. (pp. 523-552). New York, NY: Elsevier Inc. https://doi.org/10.1016/B978-012588365-8/50018-9
  4. Bhatia, A., Zahoor, S. (2007). Staphylococcus aureus enterotoxins: A Review. JCDR 1(2): 188-197.              
  5. Hennekinne J.A., Brun, V., De Buyser, M.L., Dupuis, A., Ostyn, A., Dragacci, S. (2009). Innovative contribution of mass spectrometry to characterise staphylococcal enterotoxins involved in food outbreaks. Appl Environ Microbiol. 75(3): 882-884. https://doi.org/10.1128/AEM.01924-08 PMid:19074605 PMCid:PMC2632143      
  6. Ono, H.K., Omoe, K., Imanishi, K., Iwakabe, Y., Hu, D.L., Kato, H., Saito, N., Nakane, A, Uchiyama, T., Shinagawa, K. (2008). Identification and characterization of two novel staphylococcal enterotoxins types S and T. Infect Immun. 76(11): 4999-5005. https://doi.org/10.1128/IAI.00045-08 PMid:18710864 PMCid:PMC2573384          
  7. Arslan, S., Özdemir, F. (2017). Molecular characterization and detection of enterotoxins, methicillin resistance genes and antimicrobial resistance of Staphylococcus aureus from fish and ground beef. Pol J Vet Sci. 20(1): 85-94. https://doi.org/10.1515/pjvs-2017-0012 PMid:28525337 
  8. Alibayov, B., Zdeňková, K., Purkrtová, S., Demnerová, K., Karpíšková, R. (2014). Detection of some phenotypic and genotypic characteristics of Staphylococcus aureus isolated from food items in the Czech Republic. Ann Microbiol. 64(4): 1587-1596. https://doi.org/10.1007/s13213-014-0802-6
  9. Jackson, C.R., Davis, J.A., Barrett, J.B. (2013). Prevalence and characterization of methicillin-resistant Staphylococcus aureus isolates from retail meat and humans in Georgia. J Clin Microbiol. 51(4): 1199-1207. https://doi.org/10.1128/JCM.03166-12 PMid:23363837 PMCid:PMC3666775       
  10. Pereira, V., Lopes, C., Castro, A., Silva, J., Gibbs, P., Teixeira, P. (2009). Characterization for enterotoxin production, virulence factors, and antibiotic susceptibility of Staphylococcus aureus isolates from various foods in Portugal. Food Microbiol. 26(3): 278-282. https://doi.org/10.1016/j.fm.2008.12.008 PMid:19269569           
  11. Pu, Sh., Wang, F., Ge, B. (2011). Characterization of toxin genes and antimicrobial susceptibility of Staphylococcus aureus isolates from Louisiana retail meats. Foodborne Pathog Dis. 8(2): 299-306. https://doi.org/10.1089/fpd.2010.0679 PMid:21034265       
  12. Carfora, V., Caprioli, A. Marri, N., Sagrafoli, D., Boselli, C., Giacinti, G., Giangoloni, G., Sorbara, L., Dottarelli, S., Battisti, A., Amatiste, S. (2015). Enterotoxin genes, enterotoxin production, and methicillin resistance in Staphylococcus aureus isolated from milk and dairy products in Central Italy. Int Dairy J. 42, 12-15. https://doi.org/10.1016/j.idairyj.2014.10.009
  13. Al-Bahry S.N., Mahmoud I.Y., Al-Musharafi S.K., Sivakumar N. (2014). Staphylococcus aureus contamination during food preparation, processing and handling. IJCEA, 5(5): 338-392. https://doi.org/10.7763/IJCEA.2014.V5.415
  14. Normanno G., Firinu, A., Virgilio, S., Mula, G., Dambrosio, A., Poggiu, A., Decastelli, L., et al. (2005). Coagulase-positive Staphylococci and Staphylococcus aureus in food products marketed in Italy. Int J Food Microbiol. 98(1): 73-79. https://doi.org/10.1016/j.ijfoodmicro.2004.05.008 PMid:15617802
  15. CLSI, Clinical and Laboratory Standards Institute. (2012). Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; Approved standard - 9th Edition. CLSI document M07-A9. Clinical and Laboratory Standards Institute, Wayne, PA.         
  16. Ostyn, A., De Buyser, M.L., Guillier, F., Krys, S., Hennekinne, J.A. (2012). Benefits of the combined use of immunological- and PCR-based methods for determination of staphylococcal enterotoxin food safety criteria in cheeses. Food Anal Method. 5(2): 173-178. https://doi.org/10.1007/s12161-011-9244-y
  17. Zeleny, R., H. Emteborg, J. Charoud-Got, H. Schimmel, Y. Nia, I. Mutel, A. Ostyn, S. Herbin, JA. Hennekinne. (2015). Development of a reference material for Staphylococcus aureus enterotoxin A in cheese: Feasibility study, processing, homogeneity and stability assessment. Food Chem. 168, 241-246. https://doi.org/10.1016/j.foodchem.2014.07.066 PMid:25172706              
  18. Kérouanton, A., Hennekinne, J.A., Letertre, C., Petit, L., Chesneau, O., Brisabois, A., De Buyser, M.L. (2007). Characterization of Staphylococcus aureus strains associated with food poisoning outbreaks in France. Int J Food Microbiol. 115(3): 369-375. https://doi.org/10.1016/j.ijfoodmicro.2006.10.050 PMid:17306397
  19. DTU Food, National Food Institute, Protocol for PCR amplification of mecA, mecC (mecALGA251), spa and pvl. (2012), recommended by EURL-AR, 2nd version. Available at: https://www.eurl-ar.eu/CustomerData/Files/Folders/21-protocols/279_pcrspa-pvl-meca-mecc-sept12.pdf
  20. Stegger, M., Andersen, P.S., Kearns, A., Pichon, B., Holmes, M.A., Edwards, G., Laurent, F., Teale, C., Skov, R., Larsen, A.R. (2012). Rapid detection, differentiation and typing of methicillin-resistant Staphylococcus aureus harbouring either mecA or the new mecA homologue mecA (LGA251). Clin Microbiol Infect. 18(4): 395-400. https://doi.org/10.1111/j.1469-0691.2011.03715.x PMid:22429460
  21. Frieri, M., Kumar, K., Boutin, A. (2017). Antibiotic resistance. Review. J Infect Public Health 10(4): 369-378. https://doi.org/10.1016/j.jiph.2016.08.007 PMid:27616769       
  22. Mohammed, E.Y., Abdel-Rhman, S.H., Barwa, R., El-Sokkary, M.A. (2016). Studies on enterotoxins and antimicrobial resistance in Staphylococcus aureus isolated from various sources. Advances in Microbiology 6(4): 263-275. https://doi.org/10.4236/aim.2016.64026
  23. Xin, W., Guanghui, L., Xiaodong, X., Baowei, Y., Meili, X., Jianghong, M. (2014). Antimicrobial susceptibility and molecular typing of methicillin-resistant Staphylococcus aureus in retail foods in Shaanxi, China. Foodborne Pathog Dis. 11(4): 281-286. https://doi.org/10.1089/fpd.2013.1643 PMid:24404781 
  24. Planet, P.J., Narechania, A., Chen, L., Mathema, B., Boundy, S., Archer, G., Kreiswirth, B. (2017). Architecture of a species: Phylogenomics of Staphylococcus aureus. Trends Microbiol. 25(2): 153-166. https://doi.org/10.1016/j.tim.2016.09.009 PMid:27751626       
  25. Pu, S., Wang, F., Ge, B. (2011). Characterization of toxin genes and antimicrobial susceptibility of Staphylococcus aureus isolates from Louisiana retail meats. Foodborne Pathog Dis. 8(2): 299-306. https://doi.org/10.1089/fpd.2010.0679 PMid:21034265       
  26. Rodríguez-Lázaro, D., Oniciuc, E.A., García, P.G., Gallego, D., Fernández-Natal, I., Dominguez-Gil, M., Eiros-Bouza, J.M., Wagner, M., Nicolau A.I., Hernández, M. (2017). Detection and characterization of Staphylococcus aureus and methicillin-resistant S. aureus in foods confiscated in EU borders. Front Microbiol. 8, 1344. https://doi.org/10.3389/fmicb.2017.01344 PMid:28785245 PMCid:PMC5519621
  27. Jackson, C.R., Davis, J.A., Barrett, J.B. (2013). Prevalence and characterization of methicillin-resistant Staphylococcus aureus isolates from retail meat and humans in Georgia. J Clin Microbiol. 51(4): 1199-1207. https://doi.org/10.1128/JCM.03166-12 PMid:23363837 PMCid:PMC3666775       
  28. Coia, J.E., Browing, L., Haines, L., Birkbeck, T.H., Platt. D.J. (1992). Comparison of enterotoxins and haemolysins produced by methicillin-resistant (MRSA) and sensitive (MSSA) Staphylococcus aureus. J Med Microbiol. 36(3): 164-171. https://doi.org/10.1099/00222615-36-3-164 PMid:1548690   
  29. Kamarehei, F., Ghaemi, E.A., Dadgar, T. (2013). Prevalence of enterotoxin a and b genes in Staphylococcus aureus isolated from clinical samples and healthy carriers in Gorgan City, North of Iran. Indian J Pathol Microbiol. 56(3): 265-268. https://doi.org/10.4103/0377-4929.120388 PMid:24152506
  30. Santos, C., Meireles, H., Silva, J., Teixeira, P., Castro, A. (2016). Food handlers as potential sources ofdissemination of virulent strains of Staphylococcus aureus in the community. J Infect Public Health 9(2): 153-160. https://doi.org/10.1016/j.jiph.2015.08.001 PMid:26424093 
  31. Sergelidis, D., Angelidis, A.S. (2017). Methicillin-resistant Staphylococcus aureus: a controversial food-borne pathogen. Lett Appl Microbiol. 64(6): 409-418. https://doi.org/10.1111/lam.12735 PMid:28304109


Copyright

© 2020 Ivanova T. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Conflict of Interest Statement

The authors have declared that no competing interests exist.

Citation Information

Macedonian Veterinary Review. Volume 43, Issue 2, Pages 151-159, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: 10.2478/macvetrev-2020-0026, 2020