Original Scientific Article
Comparison of diagnostic tests for detection of bovine Rotavirus A
Shama Ranjan Barua*,
Shariful Islam,
А.М.А.М. Zonaed Siddiki,
Md Masuduzzaman,
Mohammad Alamgir Hossain,
Sharmin Chowdhury

Mac Vet Rev 2021; 44 (1): i - ix

10.2478/macvetrev-2020-0033

Received: 07 May 2020

Received in revised form: 21 September 2020

Accepted: 16 October 2020

Available Online First: 18 December 2020

Published on: 15 March 2021

Correspondence: Shama Ranjan Barua, samardvm27@gmail.com

Abstract

Bovine rotavirus A (BRVA) is a frequent causative agent of diarrhea in neonatal calves. Accurate and rapid diagnosis is crucial to prevent calf mortality from BRVA induced diarrhea. Currently, variety of diagnostic methods are being used to detect BRVA from calves’ feces: antibody-based rapid test and ELISA, and molecular-based RT-PCR and RT-qPCR. The aim of the study was to evaluate the accuracy (sensitivity and specificity) of the rapid test (Immunochromatography), ELISA, and RT-PCR assays, using RT-qPCR as the gold standard, in detection of BRVA in diarrheic calves’ fecal samples. One hundred (n=100) clinically diarrheic fecal samples were tested with four different diagnostic tools. The percent of samples positive by rapid test, ELISA, RT-PCR and RT-qPCR was 10%, 16%, 17%, and 33%, respectively. The agreement between different assays was 75% to 99%. The highest agreement was observed between ELISA and RT-PCR assay (99%). The lowest agreement was recorded (75%) between rapid test and RT-qPCR. The sensitivity of the rapid test, ELISA, and RT-PCR were 30%, 49%, and 52%, respectively when compared to the reference test (RT-qPCR), whereas specificity was 100% for all assays. In conclusion, none of the frequently used diagnostic tests showed a satisfactory level of sensitivity to identify BRVA in calves’ feces. Therefore, the use of a more sensitive rapid test should be used to identify infected calves in field conditions in order to prevent calf mortality from rotaviral diarrhea.

Keywords: calf feces, diagnostic assays, bovine rotavirus, sensitivity and specificity


References

  1. Fritzen, J.T., Oliveira, M.V., Lorenzetti, E., Alfieri, A.F., Alfieri, A.A. (2020). Genotype constellation of a rotavirus A field strain with an uncommon G8P [11] genotype combination in a rotavirus vaccinated dairy cattle herd. Arch Virol. 165, 1855-1861. https://doi.org/10.1007/s00705-020-04675-7 PMid:32472289
  2. Cho, Y.I., Yoon, K.J. (2014). An overview of calf diarrhea-infectious etiology, diagnosis, and intervention. J Vet Sci. 15(1): 1-17. https://doi.org/10.4142/jvs.2014.15.1.1 PMid:24378583 PMCid:PMC3973752
  3. Al Mawly, J., Grinberg, A., Prattley, D., Moffat, J., Marshall, J., French, N. (2015). Risk factors for neonatal calf diarrhoea and enteropathogen shedding in New Zealand dairy farms. Vet J. 203(2): 155-160. https://doi.org/10.1016/j.tvjl.2015.01.010 PMid:25653209 PMCid:PMC7110729
  4. Singh, S., Singh, R., Singh, K.P., Singh, V., Malik, Y.P.S., Kamdi, B., Singh, R., Kashyap, G. (2019). Prevalence of bovine coronavirus infection in organized dairy farms of Central and North regions, India. Biol Rhythm Res. 1-7. https://doi.org/10.1080/09291016.2019.1629093
  5. Barua, S.R., Rakib, T.M., Rahman, M.M., Selleck, S., Masuduzzaman, M., Siddiki, A.Z., Hossain, M.A., Chowdhury, S. (2019). Disease burden and associated factors of rotavirus infection in calves in south-eastern part of Bangladesh. Asian J Med Biol Res. 5(2): 107-116.
  6. Soltan, M.A., Tsai, Y.L., Lee, P.Y.A., Tsai, C.F., Chang, H.F.G., Wang, H.T.T., Wilkes, R.P. (2016). Comparison of electron microscopy, ELISA, real time RT-PCR and insulated isothermal RT-PCR for the detection of Rotavirus group A (RVA) in feces of different animal species. J Virol Methods. 235, 99-104. https://doi.org/10.1016/j.jviromet.2016.05.006 PMid:27180038 PMCid:PMC7113751
  7. Heredia, N., García, S. (2018). Animals as sources of food-borne pathogens: A review. Anim Nutr. 4(3): 250-255. https://doi.org/10.1016/j.aninu.2018.04.006 PMid:30175252 PMCid:PMC6116329
  8. Miño, S., Kern, A., Barrandeguy, M., Parreño, V. (2015). Comparison of two commercial kits and an in-house ELISA for the detection of equine rotavirus in foal feces. J Virol Methods. 222, 1-10. https://doi.org/10.1016/j.jviromet.2015.05.002 PMid:25979610
  9. Lorrot, M., Vasseur, M. (2007). How do the rotavirus NSP4 and bacterial enterotoxins lead differently to diarrhea? Virol J. 4, 31. https://doi.org/10.1186/1743-422X-4-31 PMid:17376232 PMCid:PMC1839081
  10. Chandler-Bostock, R., Hancox, L.R., Payne, H., Iturriza-Gomara, M., Daly, J.M., Mellits, K.H. (2015). Diversity of group A rotavirus on a UK pig farm. Vet Microbiol. 180(3-4): 205-211. https://doi.org/10.1016/j.vetmic.2015.09.009 PMid:26432051 PMCid:PMC4627360
  11. Mijatovic-Rustempasic, S., Esona, M.D., Williams, A.L., Bowen, M.D. (2016). Sensitive and specific nested PCR assay for detection of rotavirus A in samples with a low viral load. J Virol Methods. 236, 41-46. https://doi.org/10.1016/j.jviromet.2016.07.007 PMid:27421626 PMCid:PMC5075964
  12. Desselberger, U. (2014). Rotaviruses. Virus Res. 190, 75-96. https://doi.org/10.1016/j.virusres.2014.06.016 PMid:25016036
  13. Izzo, M.M., Kirkland, P.D., Gu, X., Lele, Y., Gunn, A.A., House, J.K. (2012). Comparison of three diagnostic techniques for detection of rotavirus and coronavirus in calf faeces in Australia. Aust Vet J. 90(4): 122-129.
  14. Maes, R.K., Grooms, D.L., Wise, A.G., Han, C., Ciesicki, V., Hanson, L., Vickers, M.L., et al. (2003). Evaluation of a human group a rotavirus assay for on-site detection of bovine rotavirus. J Clin Microbiol. 41(1): 290-294. https://doi.org/10.1128/JCM.41.1.290-294.2003 PMid:12517863 PMCid:PMC149593
  15. Cho, Y.I., Kim, W.I., Liu, S., Kinyon, J.M., Yoon, K.J. (2010). Development of a panel of multiplex real-time polymerase chain reaction assays for simultaneous detection of major agents causing calf diarrhea in feces. J Vet Diagn Invest. 22(4): 509-517. https://doi.org/10.1177/104063871002200403 PMid:20622219
  16. Jothikumar, N., Kang, G., Hill, V. (2009). Broadly reactive TaqMan assay for real-time RT-PCR detection of rotavirus in clinical and environmental samples. JIN2@cdc.gov. J Virol Meth. 155(2): 126-131. https://doi.org/10.1016/j.jviromet.2008.09.025 PMid:18951923
  17. Carrouel, F., Llodra, J.C., Viennot, S., Santamaria, J., Bravo, M., Bourgeois, D. (2016). Access to interdental brushing in periodontal healthy young adults: a cross-sectional study. PloS One. 11(5): e0155467. https://doi.org/10.1371/journal.pone.0155467 PMid:27192409 PMCid:PMC4871464
  18. Shaha, M., Sifat, S.F., Mamun, M.A., Billah, M.B., Sharif, N., Nobel, N.U., Parvez, A.K., et al. (2020). Comparative evaluation of sensitivity and specificity of immunochromatography kit for the rapid detection of norovirus and rotavirus in Bangladesh. F1000Res. 8, 173. [Internet] https://f1000research.com/articles/8-173/v2  https://doi.org/10.12688/f1000research.17362.2
  19. Lorestani, N., Moradi, A., Teimoori, A., Masodi, M., Khanizadeh, S., Hassanpour, M., Javid, N., et al. (2019). Molecular and serologic characterization of rotavirus from children with acute gastroenteritis in northern Iran, Gorgan. BMC Gastroenterol. 19(1): 100. https://doi.org/10.1186/s12876-019-1025-x PMid:31221096 PMCid:PMC6585024
  20. Sajid, M., Kawde, A.N., Daud, M. (2015). Designs, formats and applications of lateral flow assay: A literature review. J Saudi Chem Soc. 19(6): 689-705.
  21. Liu, D. (2016). Molecular detection of human viral pathogens. CRC Press. https://doi.org/10.1201/b13590
  22. Liu, J., Kabir, F., Manneh, J., Lertsethtakarn, P., Begum, S., Gratz, J., Becker, S.M., et al. (2014). Development and assessment of molecular diagnostic tests for 15 enteropathogens causing childhood diarrhoea: a multicentre study. Lancet Infec Dis. 14(8): 716-724. https://doi.org/10.1016/S1473-3099(14)70808-4
  23. Gutiérrez-Aguirre, I., Steyer, A., Boben, J., Gruden, K., Poljšak-Prijatelj, M., Ravnikar, M. (2008). Sensitive detection of multiple rotavirus genotypes with a single reverse transcription-real-time quantitative PCR assay. J Clin Microbiol. 46(8): 2547-2554. https://doi.org/10.1128/JCM.02428-07 PMid:18524966 PMCid:PMC2519481
  24. Muktar, Y., Mam, G., Tesfaye, B., Belina, D. (2015). A review on major bacterial causes of calf diarrhea and its diagnostic method. JVMAH. 7(5): 173-185. https://doi.org/10.5897/JVMAH2014.0351
  25. Klein, D., Kern, A., Lapan, G., Benetka, V., Möstl, K., Hassl, A., Baumgartner, W. (2009). Evaluation of rapid assays for the detection of bovine coronavirus, rotavirus A and Cryptosporidium parvum in faecal samples of calves. Vet J. 182(3): 484-486. https://doi.org/10.1016/j.tvjl.2008.07.016 PMid:18778958 PMCid:PMC7110451
  26. Das, S., Medhi, M., Khaound, M., Doley, P., Islam, M., Borah, D. (2018). Detection of group a rotavirus infection in diarrhoeic calves by electropherotyping and reverse transcriptase polymerase chain reaction. JEZS. 6(3): 1071-1075.
  27. Schoenthaler, S., Kapil, S. (1999). Development and applications of a bovine coronavirus antigen detection enzyme-linked immunosorbent assay. Clin Diagn Lab Immunol. 6(1): 130-132.
  28. Liang, H., Geng, J., Bai, S., Aimuguri, A., Gong, Z., Feng, R., Shen, X., Wei, S. (2019). TaqMan real-time PCR for detecting bovine viral diarrhea virus. Pol J Vet Sci. 22(2): 405-413.
  29. Katz, E.M., Gautam, R., Bowen, M.D. (2017). Evaluation of an alternative recombinant thermostable Thermus thermophilus (rTth)-based real-time reverse transcription-PCR kit for detection of rotavirus A. J Clin Microbiol. 55(5): 1585-1587. https://doi.org/10.1128/JCM.00126-17 PMid:28275075 PMCid:PMC5405277


Copyright

© 2020 Barua S.R. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Conflict of Interest Statement

The authors have declared that no competing interests exist.

Citation Information

Macedonian Veterinary Review. Volume 44, Issue 1, Pages i-ix, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: 10.2478/macvetrev-2020-0033, 2021