The worldwide search for the new mutations in the RNA-directed RNA Polymerase domain of SARS-CoV-2
Siarhei A. Dabravolski
*
,
Yury K. Kavalionak
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is an RNA virus, responsible for the current pandemic outbreak. In total, 200 genomes of the SARS‐CoV‐2 strains from four host organisms have been analyzed. To investigate the presence of the new mutations in the RNA-directed RNA Polymerase (RdRp) of SARS-CoV-2, we analyzed sequences isolated from different hosts, with particular emphasis on human isolates. We performed a search for the new mutations of the RdRp proteins and study how those newly identified mutations could influence RdRp protein stability. Our results revealed 25 mutations in Rhinolophus sinicus, 1 in Mustela lutreola, 6 in Homo sapiens, and none in Mus musculus RdRp proteins of the SARS-CoV-2 isolates. We found that P323L is the most common stabilising radical mutation in human isolates. Also, we described several unique mutations, specific for studied hosts. Therefore, our data suggest that new and emerging variants of the SARS-CoV-2 RdRp have to be considered for the development of effective therapeutic agents and treatments.
Keywords: SARS-CoV-2, mutation, RNA-dependent, RNA polymerases, RdRp, Nsp12
References
- Wu, Z., Yang, L., Ren, X., He, G., Zhang, J., Yang, J., Qian, Z., et al. (2016). Deciphering the bat virome catalog to better understand the ecological diversity of bat viruses and the bat origin of emerging infectious diseases. ISME J. 10(3): 609-620. https://doi.org/10.1038/ismej.2015.138 PMid:26262818 PMCid:PMC4817686
- Huang, J., Song, W., Huang, H., Sun, Q. (2020). Pharmacological therapeutics targeting RNA-dependent RNA polymerase, proteinase and spike protein: from mechanistic studies to clinical trials for COVID-19. J Clin Med. 9(4): 1131. https://doi.org/10.3390/jcm9041131 PMid:32326602 PMCid:PMC7231166
- Ge, X.Y., Li, J.L., Yang, X.L., Chmura, A.A., Zhu, G., Epstein, J.H., Mazet, J.K., et al. (2013). Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature 503(7477): 535-538. https://doi.org/10.1038/nature12711 PMid:24172901 PMCid:PMC5389864
- Oreshkova, N., Molenaar, R.J., Vreman, S., Harders, F., Munnink, B.B.O., Hakze, R., Gerhards, N., et al. (2020). SARS-CoV2 infection in farmed mink, Netherlands, April 2020 [Internet]. Microbiology; 2020 May [cited 2020 May 23]. Available from: http://biorxiv.org/lookup/doi/10.1101/2020.05.18.101493 https://doi.org/10.1101/2020.05.18.101493
- Gretebeck, L.M., Subbarao, K. (2015). Animal models for SARS and MERS coronaviruses. Curr Opin Virol. 13, 123-129. https://doi.org/10.1016/j.coviro.2015.06.009 PMid:26184451 PMCid:PMC4550498
- Dabravolski, S. (2020). The worldwide search for the new mutations in the RNA-directed RNA polymerase domain of SARS-CoV-2 [Supplementary data and figures]. Available at: https://osf.io/xtz6a/. https://doi.org/10.17605/OSF.IO/XTZ6A
- Edgar, R.C. (2004). Muscle: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113. https://doi.org/10.1186/1471-2105-5-113 PMid:15318951 PMCid:PMC517706
- Okonechnikov, K., Golosova, O., Fursov, M. (2012). Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28(8): 1166-1167. https://doi.org/10.1093/bioinformatics/bts091 PMid:22368248
- Buchan, D.W.A., Jones, D.T. (2019). The PSIPRED protein analysis workbench: 20 years on. Nucleic Acids Res. 47(W1): W402-W407. https://doi.org/10.1093/nar/gkz297 PMid:31251384 PMCid:PMC6602445
- Laimer, J., Hiebl-Flach, J., Lengauer, D., Lackner, P. (2016). MAESTRO web: a web server for structure-based protein stability prediction. Bioinformatics 32(9): 1414-1416. https://doi.org/10.1093/bioinformatics/btv769 PMid:26743508
- Rodrigues, C.H.M., Pires, D.E.V., Ascher, D.B. (2018). DynaMut: predicting the impact of mutations on protein conformation, flexibility and stability. Nucleic Acids Res. 46(W1): W350-W355. https://doi.org/10.1093/nar/gky300 PMid:29718330 PMCid:PMC6031064
- Pires, D.E.V., Ascher, D.B., Blundell, T.L. (2014). DUET: a server for predicting effects of mutations on protein stability using an integrated computational approach. Nucleic Acids Res. 42(W1):W314-W319. https://doi.org/10.1093/nar/gku411 PMid:24829462 PMCid:PMC4086143
- Duffy, S. (2018). Why are RNA virus mutation rates so damn high? PLOS Biol. 16(8): e3000003. https://doi.org/10.1371/journal.pbio.3000003 PMid:30102691 PMCid:PMC6107253
- Smith, E.C., Denison, M.R. (2013). Coronaviruses as DNA wannabes: a new model for the regulation of RNA virus replication fidelity. PLoS Pathog. 9(12): e1003760. https://doi.org/10.1371/journal.ppat.1003760 PMid:24348241 PMCid:PMC3857799
- Irwin, K.K., Renzette, N., Kowalik, T.F., Jensen, J.D. (2015). Antiviral drug resistance as an adaptive process. Virus Evol. 2(1): vew014. https://doi.org/10.1093/ve/vew014 PMid:28694997 PMCid:PMC5499642
- Frappier, V., Chartier, M., Najmanovich, R.J. (2015). ENCoM server: exploring protein conformational space and the effect of mutations on protein function and stability. Nucleic Acids Res. 43(W1): W395-400. https://doi.org/10.1093/nar/gkv343 PMid:25883149 PMCid:PMC4489264
- Bao, L., Deng, W., Huang, B., Gao, H., Liu, J., Ren, L., Wei, Q., et al. (2020). The pathogenicity of SARS-CoV-2 in hACE2 transgenic mice. Nature 583(7818): 830-833. https://doi.org/10.1038/s41586-020-2312-y PMid:32380511
- Zhou, P., Yang, X.L., Wang, X.G., Hu, B., Zhang, L., Zhang, W., Si, H.R., et al. (2020). A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579(7798): 270-273.
- Sexton, N.R., Smith, E.C., Blanc, H., Vignuzzi, M., Peersen, O.B., Denison, M.R. (2016). Homology-based identification of a mutation in the coronavirus RNA-dependent RNA polymerase that confers resistance to multiple mutagens. J Virol. 90(16): 7415-7428. https://doi.org/10.1128/JVI.00080-16 PMid:27279608 PMCid:PMC4984655
- Ruan, Z., Liu, C., Guo, Y., He, Z., Huang, X., Jia, X. (2020). Potential inhibitors targeting RNA-dependent RNA polymerase activity (NSP12) of SARS-CoV-2 [Internet]. Preprints 2020030024 [cited 2020 May 23]. Available from: https://www.preprints.org/manuscript/202003.0024/v1 https://doi.org/10.20944/preprints202003.0024.v1
- Pfeiffer, J.K., Kirkegaard, K. (2003). A single mutation in poliovirus RNA-dependent RNA polymerase confers resistance to mutagenic nucleotide analogs via increased fidelity. Proc Natl Acad Sci U S A. 100(12): 7289-7294. https://doi.org/10.1073/pnas.1232294100 PMid:12754380 PMCid:PMC165868
- Neogi, U., Hill, K.J., Ambikan, A.T., Heng, X., Quinn, T.P., Byrareddy, S.N., Sönnerborg, A., et al. (2020). Feasibility of known RNA polymerase inhibitors as Anti-SARS-CoV-2 drugs. Pathogens 9(5): 320. https://doi.org/10.3390/pathogens9050320 PMid:32357471 PMCid:PMC7281371
- Shannon, A., Le, N.T.T., Selisko, B., Eydoux, C., Alvarez, K., Guillemot, J.C., Decroly, E., et al. (2020). Remdesivir and SARS-CoV-2: Structural requirements at both nsp12 RdRp and nsp14 Exonuclease active-sites. Antiviral Res. 178, 104793. https://doi.org/10.1016/j.antiviral.2020.104793 PMid:32283108 PMCid:PMC7151495
- Gao, Y., Yan, L., Huang, Y., Liu, F., Zhao, Y., Cao, L., Wang, T., et al. (2020). Structure of the RNA-dependent RNA polymerase from COVID-19 virus. Science 368(6492): 779-782. https://doi.org/10.1126/science.abb7498 PMid:32277040 PMCid:PMC7164392
- Wang, M., Cao, R., Zhang, L., Yang, X., Liu, J., Xu, M., Shi, Z., et al. (2020). Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 30(3): 269-271. https://doi.org/10.1038/s41422-020-0282-0 PMid:32020029 PMCid:PMC7054408
- Pachetti, M., Marini, B., Benedetti, F., Giudici, F., Mauro, E., Storici, P., Masciovecchio, C., et al. (2020). Emerging SARS-CoV-2 mutation hot spots include a novel RNA-dependent-RNA polymerase variant. J Transl Med. 18(1): 179. https://doi.org/10.1186/s12967-020-02344-6 PMid:32321524 PMCid:PMC7174922
- Coppée, F., Lechien, J.R., Declèves, A.E., Tafforeau, L., Saussez, S. (2020). Severe acute respiratory syndrome coronavirus 2: virus mutations in specific European populations. New Microbes New Infect. 36, 100696. https://doi.org/10.1016/j.nmni.2020.100696 PMid:32509310 PMCid:PMC7238997
- Chand, G.B., Banerjee, A., Azad, G.K. (2020). Identification of novel mutations in RNA-dependent RNA polymerases of SARS-CoV-2 and their implications on its protein structure. PeerJ. 8, e9492. https://doi.org/10.7717/peerj.9492 PMid:32685291 PMCid:PMC7337032
Copyright
© 2020 Dabravolski S.A. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Conflict of Interest Statement
The authors have declared that no competing interests exist.
Citation Information
Macedonian Veterinary Review. Volume 44, Issue 1, Pages 87-94, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: 10.2478/macvetrev-2020-0036, 2021