Original Scientific Article
Isolation rate of Campylobacter spp. and detection of virulence genes of Campylobacter jejuni across the broiler chain
Ljupco Angelovski * ,
Zagorka Popova ,
Katerina Blagoevska ,
Sandra Mojsova ,
Marija Ratkova Manovska ,
Mirko Prodanov ,
Dean Jankuloski ,
Pavle Sekulovski

Mac Vet Rev 2021; 44 (2): 149 - 157

10.2478/macvetrev-2021-0020

Received: 16 March 2021

Received in revised form: 10 May 2021

Accepted: 17 May 2021

Available Online First: 19 June 2021

Published on: 15 October 2021

Correspondence: Ljupco Angelovski, angelovski@fvm.ukim.edu.mk
PDF HTML

Abstract

The aim of the study was to identify the isolation rate of thermotolerant campylobacters in a small-scale broiler-meat production farm over a one-year period. The second deliverable of the study was to determine the potential virulence markers. The laboratory investigation was performed on 283 samples (cloacal swabs, caeca, carcass swabs) collected on three sampling points (farm, slaughter line, and cold storage). The isolates obtained with the conventional microbiological method were confirmed with multiplex PCR for identification of campylobacters. The presence of 10 virulence genes was analyzed in the C. jejuni isolates ( flaA, racR, virB11, dnaJ, wlaN, cadF, ciaB, cdtA, cdtB, cdtC). Out of 283 samples, 169 (59.7%) were confirmed as Campylobacter spp., 111 (39.2%) C. jejuni, and 43 (15.2%) C. coli. C. jejuni was the most prevalent in all sampling points. Campylobacter spp. showed a characteristically seasonal prevalence with the highest isolation rate during the warmer period of the year. We detected the cadF and ciaB genes in all C. jejuni isolates. The flaA gene was present in 50% of the examined strains. The cdt genes (cdtA, cdtB, and cdtC) were confirmed in 52.8%, 52.8%, and 47.2% of the C. jejuni strains, respectively. C. jejuni showed 15 profiles of virulence patterns with four predominant profiles.

Keywords: isolation rate, Campylobacter spp., virulence, Campylobacter jejuni, broiler chain


References

  1. Kaakoush, N.O., Castaño-Rodríguez, N., Mitchell, H.M., Man, S.M. (2015). Global epidemiology of Campylobacter infection. Clin Microbiol Rev. 28(3): 687–720. https://doi.org/10.1128/CMR.00006-15
  2. Gillespie, I.A., O'Brien, S.J., Frost, J.A., Adak, G.K., Horby, P., Swan, A.V., Painter, M.J., Neal, K.R., Campylobacter Sentinel Surveillance Scheme Collaborators (2002). A case-case comparison of Campylobacter coli and Campylobacter jejuni infection: a tool for generating hypotheses. Emerging Inf Dis. 8(9): 937–942. https://doi.org/10.3201/eid0809.010817
  3. Tam, C.C., O'Brien, S.J., Adak, G.K., Meakins, S.M., Frost, J.A. (2003). Campylobacter coli - an important foodborne pathogen. J Inf. 47(1): 28–32. https://doi.org/10.1016/s0163-4453(03)00042-2
  4. Newell, D.G., Fearnley, C. (2003). Sources of Campylobacter colonization in broiler chickens. Appl Environ Microbiol. 69(8): 4343–4351. https://doi.org/10.1128/aem.69.8.4343-4351.2003
  5. EFSA and ECDC (European Food Safety Authority and European Centre for Disease Prevention and Control), 2021. The European Union One Health 2019 Zoonoses Report. EFSA Journal 2021;19(2):6406, 286 pp. https://doi.org/10.2903/j.efsa.2021.6406
  6. Allos B.M. (2001). Campylobacter jejuni infections: update on emerging issues and trends. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 32(8): 1201–1206. https://doi.org/10.1086/319760
  7. Cawthraw, S.A., Lind, L., Kaijser, B. Newell, D.G. (2000). Antibodies, directed towards Campylobacter jejuni antigens, in sera from poultry abattoir workers. Clin Experimen Immunol. 122(1): 55–60. https://doi.org/10.1046/j.1365-2249.2000.01349.x
  8. Deming, M.S., Tauxe, R.V., Blake, P.A., Dixon, S.E., Fowler, B.S., Jones, T.S., Lockamy, E.A., Patton, C.M., Sikes, R.O. (1987). Campylobacter enteritis at a university: transmission from eating chicken and from cats. Amer J Epid. 126(3): 526–534. https://doi.org/10.1093/oxfordjournals.aje.a114685
  9. Schorr, D., Schmid, H., Rieder, H.L., Baumgartner, A., Vorkauf, H., Burnens, A. (1994). Risk factors for Campylobacter enteritis in Switzerland. Zentralblatt fur Hygiene und Umweltmedizin = International journal of hygiene and environmental medicine, 196(4): 327–337.
  10. Studahl, A., Andersson, Y. (2000). Risk factors for indigenous campylobacter infection: a Swedish case-control study. Epidem Inf. 125(2): 269–275. https://doi.org/10.1017/s0950268899004562
  11. McCarthy, N.D., Gillespie, I.A., Lawson, A.J., Richardson, J., Neal, K.R., Hawtin, P.R., Maiden, M.C., O'Brien, S.J. (2012). Molecular epidemiology of human Campylobacter jejuni shows association between seasonal and international patterns of disease. Epidem Inf. 140(12): 2247–2255. https://doi.org/10.1017/S0950268812000192
  12. European Centre for Disease Prevention and Control. (2016). EU protocol for harmonised monitoring of antimicrobial resistance in human Salmonella and Campylobacter  isolates.
  13. Friedman, C.R.,  Neimann, J., Wegener, H.C., Tauxe, R.V. (2000).  Epidemiology  of Campylobacter  jejuni  infections  in  the  United  States  and  other  industrialized nations.  In: Nachamkin I, Blaser MJ, editors. Campylobacter. 2nd ed. Washington DC: ASM press; p.121-138.
  14. García-Sánchez, L., Melero, B., Rovira, J. (2018). Campylobacter in the Food Chain. Advances in food and nutrition research, 86, 215–252. https://doi.org/10.1016/bs.afnr.2018.04.005
  15. Casabonne, C., Gonzalez, A., Aquili, V., Subils, T., Balague, C. (2016). Prevalence of Seven Virulence Genes of Campylobacter jejuni Isolated from Patients with Diarrhea in Rosario, Argentina, Int J Infect. 3(4): e37727. doi:10.17795/iji-37727.
  16. Bolton D.J. (2015). Campylobacter virulence and survival factors. Food microbiology, 48, 99–108. https://doi.org/10.1016/j.fm.2014.11.017
  17. ISO standard 10272-1 Horizontal method for detection and enumeration of Campylobacter spp. - Part 1: Detection method.
  18. Wang, G., Clark, C.G., Taylor, T.M., Pucknell, C., Barton, C., Price, L., Woodward, D.L., Rodgers, F.G. (2002). Colony multiplex PCR assay for identification and differentiation of Campylobacter jejuni, C. coli, C. lari, C. upsaliensis, and C. fetus subsp. fetus. Journal of clinical microbiology, 40(12): 4744–4747. https://doi.org/10.1128/jcm.40.12.4744-4747.2002
  19. Datta, S., Niwa, H., Itoh, K. (2003). Prevalence of 11 pathogenic genes of Campylobacter jejuni by PCR in strains isolated from humans, poultry meat and broiler and bovine faeces. Journal of medical microbiology, 52(Pt 4): 345–348. https://doi.org/10.1099/jmm.0.05056-0
  20. Saleha, A.A. (2002). Isolation and Characterization of Campylobacter jejuni from Broiler Chickens in Мalaysia. Intl J of Poultry Science 1(4): 94-97. DOI: 10.3923/ijps.2002.94.97
  21. Schwan, P. (2010).  Prevalence and antibiotic resistance of Campylobacter spp. in poultry and raw meat in the Can Tho Province, Vietnam. Degree Project. Swedish University of Agricultural Sciences.
  22. EFSA Panel on Biological Hazards (BIOHAZ). (2011). Scientific Opinion on Campylobacter in broiler meat production: control options and performance objectives and/or targets at different stages of the food chain. EFSA Journal 9(4): 2105. [141 pp.]. doi:10.2903/j.efsa.2011.2105. Available online: www.efsa.europa.eu/efsajournal
  23. Di Giannatale, E., Prencipe, V., Colangeli, P., Alessiani, A., Barco, L., Staffolani, M., Tagliabue, S., Grattarola, C., Cerrone, A., Costa, A., Pisanu, M., Santucci, U., Iannitto, G., Migliorati, G. (2010). Prevalence of thermotolerant Campylobacter in broiler flocks and broiler carcasses in Italy. Veterinaria italiana, 46(4): 405–423.
  24. Perez-Arnedo, I., Gonzalez-Fandos, E. (2019). Prevalence of Campylobacter spp. in Poultry in Three Spanish Farms, A Slaughterhouse and A Further Processing Plant. Foods (Basel, Switzerland), 8(3): 111. https://doi.org/10.3390/foods8030111
  25. Zhu, J., Yao, B., Song, X., Wang, Y., Cui, S., Xu, Gong, P. (2017). Prevalence and quantification of Campylobacter contamination on raw chicken carcasses for retail sale inChina. Food Cont 75, 196–202. https://doi.org/10.1016/j.foodcont.2016.12.007
  26. Jorgensen, F., Ellis-Iversen, J., Rushton, S., Bull, S.A., Harris, S.A., Bryan, S.J., Gonzalez, A., Humphrey, T.J. (2011). Influence of season and geography on Campylobacter jejuni and C. coli subtypes in housed broiler flocks reared in Great Britain. Applied and environmental microbiology, 77(11): 3741–3748. https://doi.org/10.1128/AEM.02444-10
  27. Rushton, S.P., Humphrey, T.J., Shirley, M.D., Bull, S., Jørgensen, F. (2009). Campylobacter in housed broiler chickens: a longitudinal study of risk factors. Epidemiology and infection, 137(8): 1099–1110. https://doi.org/10.1017/S095026880800188X
  28. Patrick, M.E., Christiansen, L.E., Wainø, M., Ethelberg, S., Madsen, H., Wegener, H.C. (2004). Effects of climate on incidence of Campylobacter spp. in humans and prevalence in broiler flocks in Denmark. Applied and environmental microbiology, 70(12): 7474–7480. https://doi.org/10.1128/AEM.70.12.7474-7480.2004
  29. Patrick, M.E., Christiansen, L.E., Wainø, M., Ethelberg, S., Madsen, H., Wegener, H.C. (2004). Effects of climate on incidence of Campylobacter spp. in humans and prevalence in broiler flocks in Denmark. Applied and environmental microbiology, 70(12), 7474–7480. https://doi.org/10.1128/AEM.70.12.7474-7480.2004
  30. Bang, D.D., Nielsen, E.M., Scheutz, F., Pedersen, K., Handberg, K., Madsen, M. (2003). PCR detection of seven virulence and toxin genes of Campylobacter jejuni and Campylobacter coli isolates from Danish pigs and cattle and cytolethal distending toxin production of the isolates. Journal of applied microbiology, 94(6): 1003–1014. https://doi.org/10.1046/j.1365-2672.2003.01926.x
  31. Wieczorek, K., Osek, J. (2015). A five-year study on prevalence and antimicrobial resistance of Campylobacter from poultry carcasses in Poland. Food microbiology, 49, 161–165. https://doi.org/10.1016/j.fm.2015.02.006
  32. Zhang, T., Luo, Q., Chen, Y., Li, T., Wen, G., Zhang, R., Luo, L., Lu, Q., Ai, D., Wang, H., Shao, H. (2016). Molecular epidemiology, virulence determinants and antimicrobial resistance of Campylobacter spreading in retail chicken meat in Central China. Gut pathogens, 8, 48. https://doi.org/10.1186/s13099-016-0132-2
  33. Laprade, N., Cloutier, M., Lapen, D.R., Topp, E., Wilkes, G., Villemur, R., Khan, I.U. (2016). Detection of virulence, antibiotic resistance and toxin (VAT) genes in Campylobacter species using newly developed multiplex PCR assays. Journal of microbiological methods, 124, 41–47. https://doi.org/10.1016/j.mimet.2016.03.009
  34. Lapierre, L., Gatica, M.A., Riquelme, V., Vergara, C., Yañez, J.M., San Martín, B., Sáenz, L., Vidal, M., Martínez, M.C., Araya, P., Flores, R., Duery, O., Vidal, R. (2016). Characterization of Antimicrobial Susceptibility and Its Association with Virulence Genes Related to Adherence, Invasion, and Cytotoxicity in Campylobacter jejuni and Campylobacter coli Isolates from Animals, Meat, and Humans. Microbial drug resistance (Larchmont, N.Y.), 22(5): 432–444. https://doi.org/10.1089/mdr.2015.0055
  35. Ghorbanalizadgan, M., Bakhshi, B., Kazemnejadlili, A., Najar-Peerayeh, S., Nikmanesh, B. (2014). A molecular survey of Campylobacter jejuni and Campylobacter coli virulence and diversity. Iranian biomedical journal, 18(3): 158–164. https://doi.org/10.6091/ibj.1359.2014
  36. Nahar, N., Rashid, R.B. (2018). Genotypic Analysis of the Virulence and Antibiotic Resistance Genes in Campylobacter species in silico. J Bioanal Biomed 10: 13-23.
  37. Koolman, L., Whyte, P., Burgess, C., Bolton, D. (2015). Distribution of virulence-associated genes in a selection of Campylobacter isolates. Foodborne pathogens and disease, 12(5): 424–432. https://doi.org/10.1089/fpd.2014.1883
  38. Gilbert, M., Brisson, J.R., Karwaski, M.F., Michniewicz, J., Cunningham, A.M., Wu, Y., Young, N.M., Wakarchuk, W.W. (2000). Biosynthesis of ganglioside mimics in Campylobacter jejuni OH4384. Identification of the glycosyltransferase genes, enzymatic synthesis of model compounds, and characterization of nanomole amounts by 600-mhz (1)h and (13)c NMR analysis. The Journal of biological chemistry, 275(6): 3896–3906. https://doi.org/10.1074/jbc.275.6.3896
  39. Rossler, E., Olivero, C., Soto, L.P., Frizzo, L.S., Zimmermann, J., Rosmini, M.R., Sequeira, G.J., Signorini, M.L., Zbrun, M.V. (2020). Prevalence, genotypic diversity and detection of virulence genes in thermotolerant Campylobacter at different stages of the poultry meat supply chain. International journal of food microbiology, 326, 108641. https://doi.org/10.1016/j.ijfoodmicro.2020.108641
  40. Wysok, B., Wojtacka, J., Wiszniewska-Łaszczych, A., Szteyn, J. (2020). Antimicrobial Resistance and Virulence Properties of Campylobacter Spp. Originating from Domestic Geese in Poland. Animals : an open access journal from MDPI, 10(4), 742. https://doi.org/10.3390/ani10040742
  41. Bacon, D.J., Alm, R.A., Burr, D.H., Hu, L., Kopecko, D.J., Ewing, C.P., Trust, T.J., Guerry, P. (2000). Involvement of a plasmid in virulence of Campylobacter jejuni 81-176. Infection and immunity, 68(8): 4384–4390. https://doi.org/10.1128/iai.68.8.4384-4390.2000


Copyright

© 2021 Angelovski Lj. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Conflict of Interest Statement

Competing Interests: The authors have declared that no competing interests exist.

Citation Information

Macedonian Veterinary Review. Volume 44, Issue 2, Pages 149-157, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: 10.2478/macvetrev-2021-0020, 2021