Original Scientific Article
The effect of alkaline water and sodium ascorbate on glucose and cortisol levels during acute hyperthermic stress in white laboratory rats
Valdrina Ajeti * ,
Slagjana Brsakoska ,
Vasilka Rendjova ,
Marija Angelovski ,
Icko Gjorgoski

Mac Vet Rev 2021; 44 (2): 179 - 185

10.2478/macvetrev-2021-0023

Received: 12 May 2021

Received in revised form: 30 June 2021

Accepted: 14 July 2021

Available Online First: 16 August 2021

Published on: 15 October 2021

Correspondence: Valdrina Ajeti, valdrinaajetii@gmail.com
PDF HTML

Abstract

Stress can be a reason for some physiological and biological disorders in the body. The antioxidative defense system is necessary for the maintenance of redox homeostasis in the organisms. Alkaline water (AW) is in the focus of the scientific interest due to its antioxidative effect. The treatment with AW and sodium ascorbate (SA) is expected to have potential preventive effect on the organism to hyperthermic stress. The aim of this study was to investigate the effect of AW and SA on glucose and cortisol levels during acute hyperthermic stress, in white female Wistar laboratory rats. The rats were divided into three groups, each having 10 subjects. They were exposed in hyperthermic conditions (41˚C) for 80 min, in 21 consecutive days in order to induce oxidative stress. The first group received drinkable water (control group), the second AW, and the third, AW and SA. Plasma glucose levels were determined by colorimetric method. Cortisol level was measured by the enzyme-linked immunosorbent assay method (ELISA). The means were compared using the Tukey test. Differences were considered significant at a level of p<0.05. Our results showed that levels of glucose and cortisol were significantly higher in the group treated with AW on the 21st day after treatment (p<0.0001), but not on the 7th and 14th day as compared to the control group. Also, co-treatment of animals with AW and SA had significantly increased the levels of glucose and cortisol on the 21st day after treatment, indicating a synergistic effect. In conclusion, the individual action of AW or in synergism with SA caused a high protective effect on oxidative damage in white Wistar laboratory rats.

Keywords: alkaline water, sodium ascorbate, hyperthermic stress, glucose, cortisol


References

  1. Shirahata, S., Kabayama, S., Nakano, M., Miura, T., Kusumoto, K., Gotoh, M., Hayashi, H., et al. (1997). Electrolyzed-reduced water scavenges active oxygen species and protects DNA from oxidative damage. Biochem Biophys Res Commun. 234, 269-274 . https://doi.org/10.1006/bbrc.1997.6622 PMid:9169001
  2. Kashiwagi, T., Hamasaki, T., Kabayama, S., Takaki, M., Teruya, K., Katakura, Y., et al. (2005). Suppression of oxidative stress-induced apoptosis of neuronal cells by electrolyzed reduced water. In: Gòdia F., Fussenegger M. (Eds.), Animal cell technology meets genomics. ESACT Proceedings, Vol 2. (pp. 257-259). Dordrecht: Springer https://doi.org/10.1007/1-4020-3103-3_50
  3. Watanabe, T. (1995). Effect of alkaline ionized water on reproduction in gestational and lactational rats. J Toxicol Sci. 20, 135-142. https://doi.org/10.2131/jts.20.135 PMid:7473891              
  4. Hanaoka, K. (2001). Antioxidant effects of reduced water produced by electrolysis of sodium chloride solutions. J Appl Electrochem. 31, 1307-1313. https://doi.org/10.1023/A:1013825009701
  5. Oda, M., Kusumoto, K., Teruya, K., Hara, T., Maki, S., Kabayama, S., et al. (1999). Electrolyzed and natural reduced water exhibit insulin-like activity on glucose uptake into muscle cells and adipocytes. In: A. Bernard, B. Griffiths, W. Noe, F. Wurm (Eds.), Animal cell technology: Products from cells, cells as products. (pp. 425-427). Dordrecht: Kluwer Academic Publishers https://doi.org/10.1007/0-306-46875-1_90
  6. Kim, J. M., Yokoyama, K. (1997). Effects of alkaline ionized water on spontaneously diabetic GK-rats fed sucrose. Korean J Lab Anim Sci. 13, 187-190.
  7. Watanabe, T., Kishikawa, Y., Shirai, W. (1997). Influence of alkaline ionized water on rat erythrocyte hexokinase activity and myocardium. J Toxicol Sci. 22, 141-152. https://doi.org/10.2131/jts.22.2_141 PMid:9198011       
  8. Li, Y.P., Nishimura, T., Teruya, K., Maki, T., Komatsu, T., Hamasaki, T., et al. (2002). Protective mechanism of reduced water against alloxan-induced pancreatic β-cell damage: scavenging effect against reactive oxygen species. Cytotechnology 40(1-3):139-149. 
  9. Li. Y.P., Teruya. K., Katakura. Y. , Kabayama. S. , Otsubo. K., Morisawa. S., et al. (2005). Effect of reduced water on the apoptotic cell death triggered by oxidative stress in pancreatic β HIT-T15 cell. In: Gòdia F., Fussenegger M. (Eds.), Animal cell technology meets genomics. ESACT Proceedings, Vol 2. (pp. 121-124). Dordrecht: Springer https://doi.org/10.1007/1-4020-3103-3_21
  10. Li, Y.P., Hamasaki, T., Nakamichi, N., Kashiwagi, T., Komatsu, T., Ye J., et al. (2011). Suppressive effects of electrolyzed reduced water on alloxan-induced apoptosis and type 1 diabetes mellitus. Cytotechnology 63(2): 119-131. https://doi.org/10.1007/s10616-010-9317-6 PMid:21063772 PMCid:PMC3080478
  11. Li Y.P., Hamasaki T., Teruya K., Nakamichi N., Gadek Z., Kashiwagi T., et al. (2012). Suppressive effects of natural reduced waters on alloxan-induced apoptosis and type 1 diabetes mellitus. Cytotechnology 64, 281-297. https://doi.org/10.1007/s10616-011-9414-1 PMid:22143345 PMCid:PMC3386384       
  12. Pizzino, G., Irrera, N., Cucinotta, M., Pallio, G., Mannino, F., Arcoraci, V., Squadrito, F., et al. (2017). Oxidative stress: harms and benefits for human health. Oxid Med Cell Longev. 2017, 8416763. https://doi.org/10.1155/2017/8416763 PMid:28819546 PMCid:PMC5551541   
  13. Halliwel, B., Gutteridge, JMC. (1989). Free radicals in biology and medicine. New York: Oxford University Press
  14. Hall, D.M., Buettner, G.R., Matthes, R.D., Gisolfi, C.V. (1994). Hyperthermia stimulates nitric oxide formation: electron paramagnetic resonance detection of NO-heme in blood. J Appl Physiol. 77, 548-553. https://doi.org/10.1152/jappl.1994.77.2.548 PMid:8002499             
  15. Webb, A.L., Villamor, E. (2007). Update: Effects of antioxidant and non-antioxidant vitamin supplementation on immune function. Nutr Rev. 65, 181. https://doi.org/10.1111/j.1753-4887.2007.tb00298.x PMid:17566547     
  16. Khassaf, M., McArdle, A., Esanu, C., Vasilaki, A., McArdle, F., Griffiths, R.D., Jackson, MJ. (2003). Effect of vitamin C supplements on antioxidant defence and stress proteins in human lymphocytes and skeletal muscle. J Physiol. 549(2): 645-652. https://doi.org/10.1113/jphysiol.2003.040303 PMid:12692182 PMCid:PMC2342961         
  17. Ardekani, M.A., Ardekani, A.S. (2007). Effect of vitamin C on blood glucose, serum lipids & serum insulin in type II diabetes patients. Indian J Med Res. 126(5): 471-474.       
  18. Sargeant, L.A., Wareham, N.J., Bingham, S., Day, N.E., Luben, R.N., Oakes, S., Welch, A., Khaw, K.T. (2000). Vitamin C and hyperglycemia in the European prospective investigation into cancer-Norfolk (EPIC-Norfolk) study: a population based study. Diabetes Care 23(6): 726-732. https://doi.org/10.2337/diacare.23.6.726 PMid:10840986            
  19. Bashaw, M.J., Sicks, F., Palme, R., Schwarzenberger, F., Tordiffe, A.S.W., Ganswindt, A. (2016). Non-invasive assessment of adrenocortical activity as a measure of stress in giraffe (Giraffa camelopardalis). BMC Vet Res. 12, 235. https://doi.org/10.1186/s12917-016-0864-8 PMid:27756312 PMCid:PMC5070010      
  20. Carnegie, S.D., Schoof, V.A., Jack, K.M. (2011). Rise to power: a case study of male fecal androgen and cortisol levels before and after a non-aggressive rank change in a group of wild white-faced capuchins (Cebus capucinus). Folia Primatol (Basel). 82(6): 299-307. https://doi.org/10.1159/000337220 PMid:22488354       
  21. O'Connor, T.M., O'Halloran, D.J., Shanahan, F. (2000). The stress response and the hypothalamic-pituitary-adrenal axis: from molecule to melancholia. QJM. 93, 323-333. https://doi.org/10.1093/qjmed/93.6.323 PMid:10873181             
  22. Aminkeng, F., Ross, C.J.D., Rassekh, S.R., Hwang, S., Rieder, M.J., Bhavsar, A.P., Smith A., et al. (2016). Recommendations for genetic testing to reduce the incidence of anthracycline-induced cardiotoxicity. Br J Clin Pharmacol. 683-695. https://doi.org/10.1111/bcp.13008 PMid:27197003 PMCid:PMC5338111      
  23. Lahiri, S., Lloyd, B.B. (1962). The form of vitamin C released by the rat adrenal. Biochem J. 84, 474-477. https://doi.org/10.1042/bj0840474 PMid:14461598 PMCid:PMC1243699           
  24. Lahiri S., Lloyd B.B. (1962). The effect of stress and corticotrophin on the concentrations of vitamin C in blood and tissues of the rat. Biochem J. 84, 478-483. https://doi.org/10.1042/bj0840478 PMid:14461597 PMCid:PMC1243700              
  25. Hooper, M.H., Carr, A., Marik, P.E. (2019). The adrenal-vitamin C axis: from fish to guinea pigs and primates. Crit Care. 23, 29. https://doi.org/10.1186/s13054-019-2332-x PMid:30691525 PMCid:PMC6348603
  26. Kajiyama, S., Hasegawa, G., Asano, M., Hosoda, H., Fukui, M., Nakamura, N., Adachi, T., et al. (2008). Supplementation of hydrogen-rich water improves lipid and glucose metabolism in patients with type 2 diabetes or impaired glucose tolerance. Nutr Res. 28, 137-143. https://doi.org/10.1016/j.nutres.2008.01.008 PMid:19083400    
  27. Mesallamy, H.E., Suwailem, S., Hamdy, N. (2007). Evaluation of C-reactive protein, endothelin-1, adhesion molecule(s), and lipids as inflammatory markers in type 2 diabetes mellitus patients. Mediators Inflamm. 2007, 73635. https://doi.org/10.1155/2007/73635 PMid:17497038 PMCid:PMC1820618
  28. Jin, D., Ryu, S.H., Kim, H.W., Yang, E.J., Lim, S.J., Ryang, Y.S., Chung, C.H., et al. (2006). Anti-diabetic effect of alkaline-reduced water on OLETF rats. Biosci Biotechnol Biochem. 70, 31-37. https://doi.org/10.1271/bbb.70.31 PMid:16428818         
  29. Kim, M.J., Kim, H.K. (2006). Anti-diabetic effects of electrolyzed reduced water in streptozotocin-induced and genetic diabetic mice. Life Sci. 79, 2288-2292. https://doi.org/10.1016/j.lfs.2006.07.027 PMid:16945392            
  30. Sreemantula, S., Kilari, E.K., Vardhan, V.A., Jaladi, R. (2005). Influence of antioxidant (L-ascorbic acid) on tolbutamide-induced hypoglycaemia /antihyperglycaemia in normal and diabetic rats. BMC Endocr Disord. 5, 2. https://doi.org/10.1186/1472-6823-5-2 PMid:15745442 PMCid:PMC555571        
  31. Jamieson, D.J. (1998). Oxidative stress responses of the yeast Saccharomyces cerevisiae. Yeast 14(16): 1511-1527. https://doi.org/10.1002/(SICI)1097-0061(199812)14:16<1511::AID-YEA356>3.0.CO;2-S
  32. Chmelíkováa, E., Bolechová, P., Chaloupková, H., Svobodová, I., Jovicic, M., Sedmíková, M. (2019). Salivary cortisol as a marker of acute stress in dogs: A review. Dom Anim Endocrinol. 72, 1-10. https://doi.org/10.1016/j.domaniend.2019.106428 PMid:32213439      
  33. McCabe, D., Lisy, K., Lockwood, C., Colbeck, M. (2017). The impact of essential fatty acid, B vitamins, vitamin C, magnesium and zinc supplementation on stress levels in women: a systematic review. JBI Database System Rev Implement Rep. 2, 402-453. https://doi.org/10.11124/JBISRIR-2016-002965 PMid:28178022 
  34. Haase, C.G., Long, A.K., James, G.F. (2016). Energetics of stress: linking plasma cortisol levels to metabolic rate in mammals. Biol Lett. 12(1): 20150867. https://doi.org/10.1098/rsbl.2015.0867 PMid:26740562 PMCid:PMC4785924      
  35. Fumeron, C., Nguyen-Khoa, T., Saltiel, C., Kebede, M., Buisson, C., Drüeke, T.B., et al. (2005). Effects of oral vitamin C supplementation on oxidative stress and inflammation status in haemodialysis patients. Nephrol Dial Transplant. 20(9): 1874-1879. https://doi.org/10.1093/ndt/gfh928 PMid:15972322       
  36. Stone, I. (1979). Homo sapiens ascorbicus, a biochemically corrected robust human mutant. Medical Hypotheses 5(6): 711-721. https://doi.org/10.1016/0306-9877(79)90093-8


Copyright

© 2021 Ajeti V. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Conflict of Interest Statement

The authors have declared that no competing interests exist.

Citation Information

Macedonian Veterinary Review. Volume 44, Issue 2, Pages 179-185, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: 10.2478/macvetrev-2021-0023, 2021