Original Scientific Article
Hypericum perforatum L. hairy root extracts – regulation of glycemic, metabolic, serum enzyme and lipid profile in STZ - induced diabetic rats
Elena Rafailovska ,
Oliver Tushevski ,
Sonja Gadzovska-Simic ,
Suzana Dinevska-Kjovkarovska ,
Biljana Miova *

Mac Vet Rev 2022; 45 (1): 5 - 15

10.2478/macvetrev-2021-0027

Received: 30 August 2021

Received in revised form: 28 September 2021

Accepted: 08 October 2021

Available Online First: 23 November 2021

Published on: 15 March 2022

Correspondence: Biljana Miova, bmiova@pmf.ukim.mk
PDF HTML

Abstract

Apart from currently available therapeutics for the treatment of diabetes mellitus, much attention has been paid to discover phytochemicals from natural resources, mainly due to their low side-effects. Hypericum perforatum hairy root (HR) transformed with Agrobacterium rhizogenes A4 represent prospective experimental system enriched in xanthones, known as potent antidiabetic agents. Thus, the aim of this study was to evaluate HR extracts for their potential antihyperglycemic activity in streptozotocin (STZ)-induced diabetic rats, also compared to the effects of wild-growing Hyperici herba (HH). We conducted an acute-toxicity study, multiple dose study, and 24h blood glucose measurements after a single dose administration of HH and HR (200 mg/kg) in diabetic rats. Furthermore, we examined the effects of 14-days administration of HH and HR extracts on blood glucose levels, metabolic parameters, enzyme, and lipid status in healthy and diabetic rats. Both extracts produced a fall of about 70% in blood glucose level after 24h of administration. Two-week treatment with HH and HR induced a significant decrease (70-72%) in blood glucose levels. Moreover, we found an improvement of the dysregulated metabolic parameters (body weight, food, and water consumption and urine output). Serum enzyme (AST, ALT, and γ-GT) and lipid profile parameters (CHOL, TAG, and HDL) were also improved by both extracts. These findings might provide a new insight for managing diabetic hyperglycemia and dysregulated serum enzyme and lipid profile, using extracts from transgenic roots cultures from H. perforatum.

Keywords: hairy roots, hanthones, STZ-diabetic rats, Hypericum perforatum L., antihyperglycemic


References

  1. May, L.D., Lefkowitch, J.H., Kram, M.T., Rubin, D.E. (2002). Mixed hepatocellular-cholestatic liver injury after pioglitazone therapy. Ann Intern Med. 136(6): 449-452. https://doi.org/10.7326/0003-4819-136-6-200203190-00008 PMid:11900497
  2. Sun, J.E., Ao, Z.H., Lu, Z.M., Xu, H.Y., Zhang, X.M., Dou, W.F., Xu, Z.H. (2008). Antihyperglycemic and antilipidperoxidative effects of dry matter of culture broth of Inonotus obliquus in submerged culture on normal and alloxan-diabetes mice. J Ethnopharmacol. 118(1): 7-13. https://doi.org/10.1016/j.jep.2008.02.030 PMid:18434051
  3. Li, W., Zheng, L., Sheng, C., Cheng, X., Qing, L., Qu, S. (2011). Systematic review on the treatment of pentoxifylline in patients with non-alcoholic fatty liver disease. Lipids Health Dis. 10, 49. https://doi.org/10.1186/1476-511X-10-49 PMid:21477300 PMCid:PMC3088890
  4. Nahrstedt, A., Butterweck, V. (2010). Lessons learned from herbal medicinal products: the example of St. John's wort. J Nat Prod. 73(5): 1015-1021. https://doi.org/10.1021/np1000329 PMid:20408551
  5. Velingkar, V.S., Gupta, G.L., Hegde, N.B. (2017). A current update on phytochemistry, pharmacology and herb-drug interactions of Hypericum perforatum. Phytochem Rev. 16(4): 725-744. https://doi.org/10.1007/s11101-017-9503-7
  6. Asgarpanah, J. (2012). Phytochemistry, pharmacology and medicinal properties of Hypericum perforatum L. Afr J Pharmacy and Pharmacol. 6(19): 1387-1394. https://doi.org/10.5897/AJPP12.248
  7. Fomenko, E.V., Chi, Y. (2016). Mangiferin modulation of metabolism and metabolic syndrome. Biofactors 42(5): 492-503. https://doi.org/10.1002/biof.1309 PMid:27534809 PMCid:PMC5077701
  8. Apontes, P., Liu, Z., Su, K., Benard, O., Youn, D.Y., Li, X., Li, W., et al. (2014). Mangiferin stimulates carbohydrate oxidation and protects against metabolic disorders induced by high-fat diets. Diabetes 63(11): 3626-3636. https://doi.org/10.2337/db14-0006 PMid:24848064 PMCid:PMC4207399
  9. Ibrahim, S.R., Abdallah, H.M., El-Halawany, A.M., Nafady, A.M., Mohamed, G.A. (2019). Mangostanaxanthone VIII, a new xanthone from Garcinia mangostana and its cytotoxic activity. Nat Prod Res. 33(2): 258-265. https://doi.org/10.1080/14786419.2018.1446012 PMid:29513040
  10. Ratwita, W., Sukandar, E.Y., Adnyana, I.K., Kurniati, N.F. (2019). Alpha mangostin and Xanthone activity on fasting blood glucose, insulin and langerhans Islet of langerhans in Alloxan induced diabetic mice. Pharmacogn J. 11(1): 64-68. https://doi.org/10.5530/pj.2019.1.12
  11. Malik, A., Ardalani, H., Anam, S., McNair, L.M., Kromphardt, K.J., Frandsen, R.J.N., Franzyk, H., et al. (2020). Antidiabetic xanthones with α-glucosidase inhibitory activities from an endophytic Penicillium canescens. Fitoterapia 142, 104522. https://doi.org/10.1016/j.fitote.2020.104522 PMid:32088281
  12. Husain, G.M., Singh, P.N., Kumar, V. (2009). Beneficial effects of a standardized Hypericum perforatum extract in rats with experimentally induced hyperglycemia. Drug Discov Ther. 3(5): 215-220.
  13. Arokiyaraj, S., Balamurugan, R., Augustian, P. (2011). Antihyperglycemic effect of Hypericum perforatum ethyl acetate extract on streptozotocin-induced diabetic rats. Asian Pac J Trop Biomed. 1(5): 386-390. https://doi.org/10.1016/S2221-1691(11)60085-3
  14. Can, Ö.D., Öztürk, Y., Öztürk, N., Sagratini, G., Ricciutelli, M., Vittori, S., Maggi, F. (2011). Effects of treatment with St. John's Wort on blood glucose levels and pain perceptions of streptozotocin-diabetic rats. Fitoterapia 82(4): 576-584. https://doi.org/10.1016/j.fitote.2011.01.008 PMid:21262331
  15. Moghadam, M.G., Ansari, I., Roghani, M., Ghanem, A., Mehdizade, N. (2017). The effect of oral administration of Hypericum perforatum on serum glucose and lipids, hepatic enzymes and lipid peroxidation in streptozotocin-induced diabetic rats. Galen Medical J. 6(4): 319-329.
  16. Tocci, N., Gaid, M., Kaftan, F., Belkheir, A.K., Belhadj, I., Liu, B., Svatoš, A., et al. (2018). Exodermis and endodermis are the sites of xanthone biosynthesis in Hypericum perforatum roots. New Phytologist 217(3): 1099-1112. https://doi.org/10.1111/nph.14929 PMid:29210088
  17. Tusevski, O., Krstikj, M., Petreska Stanoeva, J., Stefova, M., Gadzovska Simic, S. (2019). Phenolic compounds composition of Hypericum perforatum L. wild-growing plants from the Republic of Macedonia. Agric Conspec Sci. 84(1): 67-75.
  18. Tusevski, O., Petreska Stanoeva, J., Stefova, M., Kungulovski, Dz., Atanasovsa Pancevska, N., Sekulovski, N., Panov, S., Gadzovska Simic, S. (2013). Hairy roots of Hypericum perforatum L.: a promising system for xanthone production. Cent Eur J Biol. 8(10): 1010-1022. https://doi.org/10.2478/s11535-013-0224-7
  19. Tusevski, O., Vinterhalter, B., Milošević, D.K., Soković, M., Ćirić, A., Vinterhalter, D., Korać, S.Z., et al. (2017). Production of phenolic compounds, antioxidant and antimicrobial activities in hairy root and shoot cultures of Hypericum perforatum L. PCTOC 128(3): 589-605. https://doi.org/10.1007/s11240-016-1136-9
  20. Gadzovska, S., Maury, S., Ounnar, S., Righezza, M., Kascakova, S., Refregiers, M., Spasenoski, M., et al. (2005). Identification and quantification of hypericin and pseudohypericin in different Hypericum perforatum L. in vitro cultures. Plant Physiol Biochem. 43(6): 591-601. https://doi.org/10.1016/j.plaphy.2005.05.005 PMid:15979315
  21. Idries, A.M., Ahmed, M.E., Mudawi, M.E., Ibrahim, K.E. (2012). Interchangeability and comparative effectiveness between micronized and non-micronized products of glibenclamide tablets. Sudan JMS. 7(3): 153-159.
  22. Li, Y., Peng, G., Li, Q., Wen, S., Huang, T.H.W., Roufogalis, B.D., Yamahara, J. (2004). Salacia oblonga improves cardiac fibrosis and inhibits postprandial hyperglycemia in obese Zucker rats. Life Sci. 75(14): 1735-1746. https://doi.org/10.1016/j.lfs.2004.04.013 PMid:15268973
  23. Fouotsa, H., Lannang, A.M., Mbazoa, C.D., Rasheed, S., Marasini, B.P., Ali, Z., Devkota, K.P., et al. (2012). Xanthones inhibitors of α-glucosidase and glycation from Garcinia nobilis. Phytochem Lett. 5(2): 236-239. https://doi.org/10.1016/j.phytol.2012.01.002
  24. Szkudelski, T., Szkudelska, K. (2002). Streptozotocin induces lipolysis in rat adipocytes in vitro. Physiol Res. 51(3): 255-259.
  25. Moodley, K., Joseph, K., Naidoo, Y., Islam, S., Mackraj, I. (2015). Antioxidant, antidiabetic and hypolipidemic effects of Tulbaghia violacea Harv. (wild garlic) rhizome methanolic extract in a diabetic rat model. BMC Complement Altern Med. 15, 408. https://doi.org/10.1186/s12906-015-0932-9 PMid:26577219 PMCid:PMC4647322
  26. Kondeti, V.K., Badri, K.R., Maddirala, D.R., Thur, S.K.M., Fatima, S.S., Kasetti, R.B., Rao, C.A. (2010). Effect of Pterocarpus santalinus bark, on blood glucose, serum lipids, plasma insulin and hepatic carbohydrate metabolic enzymes in streptozotocin-induced diabetic rats. Food Chem Toxicol. 48(5): 1281-1287. https://doi.org/10.1016/j.fct.2010.02.023 PMid:20178824
  27. Lim, J., Liu, Z., Apontes, P., Feng, D., Pessin, J.E., Sauve, A.A., Angeletti, R.H., Chi, Y. (2014). Dual mode action of mangiferin in mouse liver under high fat diet. PloS One, 9(6): e100170. https://doi.org/10.1371/journal.pone.0100170 PMCid:PMC4061128
  28. Xing, X., Li, D., Chen, D., Zhou, L., Chonan, R., Yamahara, J., Wang, J., Li, Y. (2014). Mangiferin treatment inhibits hepatic expression of acyl-coenzyme A: diacylglycerol acyltransferase-2 in fructose-fed spontaneously hypertensive rats: a link to amelioration of fatty liver. Toxicol Appl Pharmacol. 280(2): 207-215. https://doi.org/10.1016/j.taap.2014.08.001 PMid:25123789
  29. Zhou, G.Y., Yi, Y.X., Jin, L.X., Lin, W., Fang, P.P., Lin, X.Z., Zheng, L., Pan, C.W. (2016). The protective effect of juglanin on fructose-induced hepatitis by inhibiting inflammation and apoptosis through TLR4 and JAK2/STAT3 signaling pathways in fructose-fed rats. Biomed Pharmacother. 81, 318-328. https://doi.org/10.1016/j.biopha.2016.04.013 PMid:27261609
  30. Na, L., Zhang, Q., Jiang, S., Du, S., Zhang, W., Li, Y., Changhao, S., Niu, Y. (2015). Mangiferin supplementation improves serum lipid profiles in overweight patients with hyperlipidemia: a double-blind randomized controlled trial. Sci Rep. 5, 10344. https://doi.org/10.1038/srep10344 PMid:25989216 PMCid:PMC4437311
  31. Karim, N., Tangpong, J. (2018). Biological properties in relation to health promotion effects of Garcinia mangostana (queen of fruit): A short report. J Health Res. 32(5): 364-370. https://doi.org/10.1108/JHR-08-2018-043
  32. Juárez-Rojop, I.E., Díaz-Zagoya, J.C., Ble-Castillo, J.L., Miranda-Osorio, P.H., Castell-Rodríguez, A.E., Tovilla-Zárate, Rodríguez-Hernández, A., et al. (2012). Hypoglycemic effect of Carica papaya leaves in streptozotocin-induced diabetic rats. BMC Complement Altern Med. 12, 236. https://doi.org/10.1186/1472-6882-12-236 PMid:23190471 PMCid:PMC3551835
  33. Ghorbani, Z., Hekmatdoost, A., Mirmiran, P. (2014). Anti-hyperglycemic and insulin sensitizer effects of turmeric and its principle constituent curcumin. Int J Endocrinol Metab. 12(4): e18081. https://doi.org/10.5812/ijem.18081 PMid:25745485 PMCid:PMC4338652
  34. Mahendran, G., Manoj, M., Murugesh, E., Kumar, R.S., Shanmughavel, P., Prasad, K.R., Bai, V.N. (2014). In vivo anti-diabetic, antioxidant and molecular docking studies of 1, 2, 8-trihydroxy-6-methoxy xanthone and 1, 2-dihydroxy-6-methoxyxanthone-8-O-β-D-xylopyranosyl isolated from Swertia corymbosa. Phytomedicine 21(11): 1237-1248. https://doi.org/10.1016/j.phymed.2014.06.011 PMid:25172785
  35. As'ari, H., Mahartini, D.M. (2016). The effect of administering mangosteen rind extract (Garnicia mangostana l) compared with glimepiride to the blood sugar levels of white male rat (Rattus norwegicus l) induced by streptozotocin. Folia Medica Indonesiana 52(4): 241-245. https://doi.org/10.20473/fmi.v52i4.5469


Copyright

© 2021 Rafailovska E. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Conflict of Interest Statement

The authors have declared that no competing interests exist.

Citation Information

Macedonian Veterinary Review. Volume 45, Issue 1, Pages 5-15, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: 10.2478/macvetrev-2021-0027, 2022