Original Scientific Article
Carbohydrate metabolism in diabetic rat’s heart – the effects of acetylsalicylic acid and heat preconditioning as HSP70 inducers
Mirsada Dervisevik,
Suzana Dinevska- Kjovkarovska,
Sasho Panov,
Elena Rafailovska,
Irena Celevska,
Biljana Miova*

Mac Vet Rev 2022; 45 (2): i - xii

10.2478/macvetrev-2022-0021

Received: 02 February 2022

Received in revised form: 31 May 2022

Accepted: 06 June 2022

Available Online First: 27 July 2022

Published on: 15 October 2022

Correspondence: Biljana Miova, bmiova@pmf.ukim.mk

Abstract

The myocardium of diabetic subjects displays reduced HSP70 protein level and weak myocardial protection. However, the heart possesses an ability to produce heat shock proteins (HSPs) after exposure to sublethal heat stress. Acetylsalicylicacid (ASA) has the property of pharmacological induction of HSPs. We evaluated the common effects of single dose ASApretreatment, prior to heat preconditioning (HP), over carbohydrate metabolism-related enzymes and substrates in the heart of diabetic rats. Streptozotocin-diabetes caused significant decrease of HSP70 protein level, stimulation of the gluconeogenic processes and inhibition of glycolytic processes in the heart. HP-diabetic hearts have significantly higher HSP70 protein level, lower glycogen, glucose-6-phosphate content, glycogen phosphorylase and hexokinase activity, and higher glucose levels and PFK activity. ASA-pretreatment of HP-diabetic animals caused additional increase of HSP70, additional decrease of glycogen, glucose-6-phosphate, glycogen phosphorylase and hexokinase, and additional increase of glucose and PFK in the heart. In conclusion, HP is physiological inducer of HSP70 level in heart and tends to reverse carbohydrate - related disturbances in diabetic rats. ASA, given prior to HP, is a potent HSP70 co-inducer and causes additional increase of HSP70 protein level in heart. ASA, given in a combination to HP, have shown more evident protective effects against subsequent intense of stress.

Keywords: heat preconditioning, acetylsalicylic acid, streptozotocin-induced diabetes, heart, carbohydrate-related enzymes and substrates


References

  1. Yellon, D.M., Baxter, G.F. (1995). A ''second window of protection'' or delayed preconditioning phenomenon: future horizons for myocardial protection? J Mol Cell Cardiol. 27(4):1023-1034. https://doi.org/10.1016/0022-2828(95)90071-3
  2. Joyeux-Faure, M., Arnaud, C., Godin-Ribuot, D., Ribuot, C. (2003). Heat stress preconditioning and delayed myocardial protection: what is new? Cardiovasc Res. 60(3): 469- 477. https://doi.org/10.1016/j.cardiores.2003.08.012 PMid:14659792            
  3. Hooper, P.L., Balogh, G., Rivas, E., Kavanagh, K., Vigh, L. (2014). The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes. Cell Stress Chaperones 19(4): 447-464. https://doi.org/10.1007/s12192-014-0493-8 PMid:24523032 PMCid:PMC4041942          
  4. Bathaie, S.Z., Jafarnejad, A., Hosseinkhani, S., Nakhjavani, M. (2010). The effect of hot-tub therapy on serum Hsp70 level and its benefit on diabetic rats: a preliminary report. Int J Hyperth. 26(6): 577-585. https://doi.org/10.3109/02656736.2010.485594 PMid:20707652            
  5. Kondo, T., Sasaki, K., Matsuyama, R., Morino-Koga, S., Adachi, H., Suico, M.A., et al. (2012). Hyperthermia with mild electrical stimulation protects pancreatic β-cells from cell stresses and apoptosis. Diabetes 61(4): 838-847. https://doi.org/10.2337/db11-1098 PMid:22362176 PMCid:PMC3314363         
  6. Horowitz, M. (2003). Matching the heart to heat-induced circulatory load: heat acclamatory responses. News Physiol Sci. 8, 215-221. https://doi.org/10.1152/nips.01453.2003 PMid:14614152
  7. Fawcett, J.W., Xu, Q., Holbrook, K.J. (1997). Potentiation of heat stress-induced HSP70 expression in vivo by aspirin. Cell Stress Chaperones 2(2): 104-109. https://doi.org/10.1379/1466-1268(1997)002<0104:POHSIH>2.3.CO;2
  8. Jurivich, D.A., Sistonen, L., Kroes, R., Morimoto, R.I. (1992). Effect of sodium salicylate on the human heat shock response. Science 255, 1243-1245. https://doi.org/10.1126/science.1546322 PMid:1546322          
  9. Wu, D., Xu, J., Song, E., Tang, S., Zhang, X., Kemper, N., Hartung, J., Bao, E. (2015). Acetyl salicylic acid protected against heat stress damage in chicken myocardial cells and may associate with induced Hsp27 expression. Cell Stress Chaperones 20(4): 687-696. https://doi.org/10.1007/s12192-015-0596-x PMid:25956131 PMCid:PMC4463918     
  10. Amici, C., Rossi, A., Santoro, G.M. (1995). Aspirin enhances thermotolerance in human erythroleukemic cells: an effect associated with the modulation of the heat shock response. Cancer Res. 55, 4452-4457.   
  11. Xu, J., Tang, S., Yin, B., Sun, J., Song, E., Bao, E. (2017). Co-enzyme Q10 and acetyl salicylic acid enhance Hsp70 expression in primary chicken myocardial cells to protect the cells during heat stress. Mol Cell Biochem. 435(1-2): 73-86. https://doi.org/10.1007/s11010-017-3058-1 PMid:28497369  
  12. Yamagishi, N., Nakayama, K., Wakatsuki, T, Hatayama, T. (2001). Characteristic changes of stress protein expression in streptozotocin-induced diabetic rats. Life Sci. 69(22): 2603-2609. https://doi.org/10.1016/S0024-3205(01)01337-6
  13. Tytell, M., Hooper, P.L. (2001). Heat shock proteins: new keys to the development of cytoprotective therapies. Expert Opin Ther Targets. 5(2): 267-287. https://doi.org/10.1517/14728222.5.2.267PMid:15992180
  14. Chen, H.S., Jia, J., Hou-Fen, S., et al. (2006). Downregulation of the constitutively expressed Hsc70 in diabetic myocardium is mediated by insulin deficiency. J Endocrin. 190(2): 433-440. https://doi.org/10.1677/joe.1.06692 PMid:16899576     
  15. Jafarnejad, А., Bathaie, S.Z., Nakhjavani, M., Hassan, M.Z. (2008). Investigation of the mechanisms involved in the high-dose and long-term acetyl salicylic acid therapy of type I diabetic rats. J Pharmacol Exp Ther. 324(2): 850-857. https://doi.org/10.1124/jpet.107.130914 PMid:18000161         
  16. Locke, M., Atance, J., (2000). The myocardial heat shock response following sodium salicylate treatment. Cell Stress Chaperones 5(4): 359-368. https://doi.org/10.1379/1466-1268(2000)005<0359:TMHSRF>2.0.CO;2
  17. Miova, B., Dinevska-Kjovkarovska, S., Esplugues, J.V., Apostolova, N. (2015). Heat stress induces extended plateau of Hsp70 accumulation - a possible cytoprotection mechanism in hepatic cells. J Cell Biochem. 116(10): 2365-2374. https://doi.org/10.1002/jcb.25187PMid:25857363
  18. Lowry, O.H., Rosenbrough, J.N., Ffffarr, L.A., Rrandall, J.R. (1951). Protein measurement with the folin phenol reagent. J Boil Chem. 193(1): 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6
  19. Keppler, D., Decker, K. (1974). Glycogen determination with amyloglucosidase. In: Hans Ulrich Bergmeyer, in collaboration with Karlfried Gawehn (Eds.), Methods of enzymatic analysis, vol. 3 (pp. 1127-1131). New York: Academic Press
  20. Stalmans, W., Wuif, H., Hue, L., Hers, H.G. (1974). The sequential inactivation of glycogen phosphorylase and activation of glycogen syntethase after the administration of glucose to mice and rats. The mechanism of the hepatic threshold to glucose. Eur J Biochem. 41(1): 127-134. https://doi.org/10.1111/j.1432-1033.1974.tb03252.x PMid:4361283      
  21. Bontemps, F., Hue, L., Hers, H.G. (1978). Phosphorylation of glucose in isolated hepatocytes. Sigmoidal kinetics explained by the activity of glucokinase alone. Biochem J. 174(2): 603-611. https://doi.org/10.1042/bj1740603 PMid:213056 PMCid:PMC1185953  
  22. Bergmeyer, U., Michal, G. (1974). Methods of enzymatic analysis. Vol 1. New York: Academic Press
  23. Fiske, C.H., Subbarow, Y. (1925). The colorimetric determination of phosphorus. J Biol Chem., 66, 375-400. https://doi.org/10.1016/S0021-9258(18)84756-1
  24. Dimitrovska, M., Dervisevik, M., Cipanovska, N., Gerazova, K., Dinevska- Kjovkarovska. S., Miova, B. (2018). Physiological and pharmacological inductors of HSP70 enhance the antioxidative defense mechanisms of the liver and pancreas in diabetic rats. Can J Physiol Pharmacol. 96(2): 158-164. https://doi.org/10.1139/cjpp-2017-0394 PMid:29028441            
  25. Dervisevik, M., Dimitrovska, M., Cipanovska, N., Dinevska- Kjovkarovska, S., Miova, B. (2019). Heat preconditioning and aspirin treatment attenuate hepatic carbohydrate- related disturbances in diabetic rats. J Therm Biol. 79, 190-198. https://doi.org/10.1016/j.jtherbio.2018.12.005 PMid:30612679  
  26. Donnelly, T.J., Sievers, R.E., Vissern, F.L., Welch, W.J., Wolfe, C.L. (1992). Heat shock protein induction in rat hearts. A role for improved myocardial salvage after ischemia and reperfusion? Circulation. 85(2): 769-778. https://doi.org/10.1161/01.CIR.85.2.769 PMid:1735169
  27. Kurucz, I., Morva, A., Vaag, A., et al. (2002). Decreased expression of heat shock protein 72 in skeletal muscle of patients with type 2 diabetes correlates with insulin resistance. Diabetes. 51(4): 1102-1109. https://doi.org/10.2337/diabetes.51.4.1102 PMid:11916932      
  28. Desrois, M., Sidell, R.J., Gauguier, D., King, L.M., Radda, G.K., Clarkeet, K. (2004). Initial steps of insulin signaling and glucose transport are defective in the type 2 diabetic rat heart. Cardiovasc Res. 61(2): 288-296. https://doi.org/10.1016/j.cardiores.2003.11.021 PMid:14736545    
  29. Parker, G., Taylor, R., Jones, D. McClain, D. (2004). Hyperglycemia and inhibition of glycogen synthase in streptozotocin-induced mice. J Biol Chem. 279(20): 20636-20642. https://doi.org/10.1074/jbc.M312139200 PMid:15014073          
  30. Dolinsky, V.W., Dyck, J.R.B. (2006). Role of AMP-activated protein kinase in healthy and diseased hearts. Am J Physiol Heart Circ Physiol. 291(6): H2557-H2569. https://doi.org/10.1152/ajpheart.00329.2006PMid:16844922
  31. An, D., Rodrigues, B. (2006). Role of changes in cardiatic metabolism in development of diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol. 291(4): H1489-H1506. https://doi.org/10.1152/ajpheart.00278.2006 PMid:16751293   
  32. Najemnikova, E., Rodgers, C.D., Locke, M. (2007). Altered heat stress response following streptozotocin-induced diabetes. Cell Stress Chaperones. 12(4): 342- 352. https://doi.org/10.1379/CSC-292.1 PMid:18229453 PMCid:PMC2134796     
  33. Marber, M.S., Walker, J.M., Latchman, D.S., Yellon, D.M. (1994). Myocardial protection after whole body heat stress in the rabbit is dependent on metabolic substrate and is related to the amount of the inducible 70-kD heat stress protein. J Clin Invest. 93(3):1087-1094. https://doi.org/10.1172/JCI117059 PMid:8132747 PMCid:PMC294046       
  34. Koo, H.N., Oh, S.Y., Kang, K., Moon, D.Y., Kim, H.D., Kang, H.S. (2000). Modulation of HSP70 and HSP90 expression by sodium salicylate and aspirin in fish cell line CHSE-214. Zool Sci. 17(9): 1275-1282. https://doi.org/10.2108/zsj.17.1275
  35. Zhang, X., Qian, Z., Zhu, H., Tang, S., Wu, D., Zhang, M., Kemper, N., Hartung, J., Bao, E. (2016). HSP90 gene expression induced by aspirin is associated with damage remission in a chicken myocardial cell culture exposed to heat stress. Br Poult Sci. 57(4): 462-473. https://doi.org/10.1080/00071668.2016.1174978PMid:27088575
  36. Coe, L.M., Denison, J.D., McCabe, L.R. (2011). Low dose aspirin therapy decreases blood glucose levels but does not prevent type I diabetes-induced bone loss. Cell Physiol Biochem. 28(5): 923-932. https://doi.org/10.1159/000335806 PMid:22178944 PMCid:PMC3709176           
  37. Martha, S., Veldandi, U.K., Devarakonda, К.R., Pantam, N., Thungathurthi, S., Reddy, Y.N. (2009). Protective effective of aspirin in relation to IGF-1 in streptozotocin induced type-II diabetic rats. Int J Endocrinol Metab. 7(1): 20-25.


Copyright

© 2022 Dervisevik M. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Conflict of Interest Statement

The authors have declared that no competing interests exist.

Citation Information

Macedonian Veterinary Review. Volume 45, Issue 2, Pages i-xii, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: 10.2478/macvetrev-2022-0021, 2022