Use of probiotic Bacillus megaterium NCH 55 for treatment of subclinical mastitis in cows – preliminary study
Oksana Shkromada
,
Alina Pikhtirova
*
,
Ewa Pecka-Kiełb
,
Oleksandr Skliar
,
Yurii Musiienko
Abstract
The development and implementation of new and safe means of treating subclinical mastitis (SM) in the production process remains a pressing problem. Our study aimed to investigate the therapeutic effect of the Bacillus megaterium NCH 55 strain on cow SM. All animals with signs of SM were fed with a basic diet with probiotic’s addition of 15 g/per day. The experiment was conveyed in 30 consecutive days. Milk and blood were collected on the 7th, 15th, and 30th day of the experiment. Daily milk yield was increased by 32.2% and somatic cell count was decreased from 290.00±32.12 to 96.80±39.03 ths/cm3. A decrease in inflammation was indicated by a decrease in POM370 (by 2.2 times) and POM430 (by 2.8 times). No significant changes in the blood serum indices of cows were observed. A probiotic’s positive effect has been established on the treatment of SM. The probiotic B. megaterium NСH 55 can be considered as an alternative to antibiotics and other chemotherapeutic drugs for treating SM in cows.
Keywords: cow, mastitis, milk, probiotics, Bacillus megaterium
References
- Ruegg, P.L. (2017). 100-Year Review: Mastitis detection, management, and prevention. J Dairy Sci. 100(12): 10381-10397. https://doi.org/10.3168/jds.2017-13023 PMid:29153171
- Le Marechal, C., Thiéry, R., Vautor, E., Loir, Y.L. (2011). Mastitis impact on technological properties of milk and quality of milk products - A Review. Dairy Sci Technol. 91, 247-282. https://doi.org/10.1007/s13594-011-0009-6
- Pecka, E., Zachwieja, A., Tumanowicz. J. (2013). Technological parameters of milk depending on the cow housing system, nutrition system, age and number of somatic cells. Przemysł Chem. 92(6): 1087-1091.
- Shkromada, O., Skliar, O., Pikhtirova, A., Gerun, I. (2019). Pathogens transmission and cytological composition of cow’s milk. Acta Vet Eurasia. 45, 73-79. https://doi.org/10.26650/actavet.2019.19004
- Elias, L., Balasubramanyam, A.S., Ayshpur, O.Y., Mushtuk, I.U., Sheremet, N.O., Gumeniuk, V.V., Musser, J., Rogovskyy, A.S. (2020). Antimicrobial susceptibility of Staphylococcus aureus, Streptococcus agalactiae, and Escherichia coli isolated from mastitic dairy cattle in Ukraine. Antibiotics 9(8): 469. https://doi.org/10.3390/antibiotics9080469 PMid:32752205 PMCid:PMC7459615
- Mushtaq, S., Shah, A.M., Shah, A., Lone, S.A., Hussain, A., Hassan, Q.P., Ali, M.N. (2018). Bovine mastitis: an appraisal of its alternative herbal cure. Microb Pathog. 114, 357-361. https://doi.org/10.1016/j.micpath.2017.12.024 PMid:29233776
- Vary, P.S. (1994). Prime time for Bacillus megaterium. Microb. 140(5): 1001-1013. https://doi.org/10.1099/13500872-140-5-1001 PMid:8025666
- Fernando, W.M.A.D.B., Flint, S.H. (2011). Role of probiotics and dietary fibre in maintaining healthy gut flora. Probiotics: Sources, Types and Health Benefits (pp. 1-52).
- Espinosa-Martos, I., Jiménez, E., de Andrés, J., Rodríguez-Alcalá, L.M., Tavárez, S., Manzano, S., Fernández, L., et al. (2016). Milk and blood biomarkers associated to the clinical efficacy of a probiotic for the treatment of infectious mastitis. Benef Micr. 7(3): 305-318. https://doi.org/10.3920/BM2015.0134 PMid:26925605
- Clemente, J.C., Manasson, J., Scher, J.U. (2018). The role of the gut microbiome in systemic inflammatory disease. BMJ 360, j5145. https://doi.org/10.1136/bmj.j5145 PMid:29311119 PMCid:PMC6889978
- Tagg, J.R., Dajani, A.S., Wannamaker, L.W. (1976). Bacteriocins of gram-positive bacteria. Bac Rev. 40(3): 722-756. https://doi.org/10.1128/br.40.3.722-756.1976 PMid:791239 PMCid:PMC413978
- Abriouel, H., Franz, C.M.A.P., Omar, N.B., Galvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev. 35(1): 201-232. https://doi.org/10.1111/j.1574-6976.2010.00244.x PMid:20695901
- Yao, J., Wang, L., Zhang, W., Liu, M., Niu, J. (2020). Effects of Bacillus megaterium on growth performance, serum biochemical parameters, antioxidant capacity, and immune function in suckling calves. Open Life Sci. 15(1): 1033-1041. https://doi.org/10.1515/biol-2020-0106 PMid:33817289 PMCid:PMC7874550
- Wang, Y., Nan, X., Zhao, Y., Jiang, L., Wang, M., Wang, H., Zhang, F., et al. (2021). Rumen microbiome structure and metabolites activity in dairy cows with clinical and subclinical mastitis. J Anim Sci Biotechnol. 12, 36. https://doi.org/10.1186/s40104-020-00543-1 PMid:33557959 PMCid:PMC7869221
- Percie du Sert, N., Ahluwalia, A., Alam, S., Avey, M.T., Baker, M., Browne, W.J., Clark, A., et al. (2020). Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PloS Biol. 18 (7): e3000411. https://doi.org/10.1371/journal.pbio.3000411 PMid:32663221 PMCid:PMC7360025
- Bhulto, A.L., Murry, R.D., Woldehiwet, Z. (2012). California mastitis test scores as indicators of subclinical intramammary infections at the end of lactation in dairy cows. Res Vet Sci. 92 (1): 13-17. https://doi.org/10.1016/j.rvsc.2010.10.006 PMid:21074231
- Reznick, A.Z., Packer, L. (1994). Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 233, 357-363. https://doi.org/10.1016/S0076-6879(94)33041-7
- Cattaneo, L., Piccioli-Cappelli, F., Lopreiato, V., Lovotti, G., Arrigoni, N., Minuti, A., Trevisi, E. (2021). Drying-off cows with low somatic cell count with or without antibiotic therapy: A pilot study addressing the effects on immunometabolism and performance in the subsequent lactation. Livest Sci. 254, 104740. https://doi.org/10.1016/j.livsci.2021.104740
- Niemi, R.E., Hovinen, M., Vilar, M.J., Simojoki, H., Rajala-Schultz, P.J. (2021). Dry cow therapy and early lactation udder health problems – Associations and risk factors. Prev Vet Med. 188, 105268. https://doi.org/10.1016/j.prevetmed.2021.105268 PMid:33530013
- Deng, B., Wang, L., Ma, Q., Yu, T., Liu, D., Dai, Y., Zhao, G. (2021). Genomics analysis of Bacillus megaterium 1259 as a probiotic and its effects on performance in lactating dairy cows. Animals 11(2): 397. https://doi.org/10.3390/ani11020397 PMid:33557352 PMCid:PMC7914491
- Forsbäck, L., Lindmark-Månsson, H., Andrén, A., Svennersten-Sjaunja, K. (2010). Evaluation of quality changes in udder quarter milk from cows with low-to-moderate somatic cell counts. Animal 4(4): 617-626. https://doi.org/10.1017/S1751731109991467 PMid:22444049
- Ogola, H., Shitandi, A., Nanua, J. (2007). Effect of mastitis on raw milk compositional quality. J Vet Sci. 8(3): 237-242. https://doi.org/10.4142/jvs.2007.8.3.237 PMid:17679769 PMCid:PMC2868129
- Wall, S.B., Oh, J-Y., Diers, A.R., Landar, A. (2012). Oxidative modification of proteins: an emerging mechanism of cell signaling. Front Physiol. 3, 369. https://doi.org/10.3389/fphys.2012.00369 PMid:23049513 PMCid:PMC3442266
- Yeoman, C.J., White, B.A. (2014). Gastrointestinal tract microbiota and probiotics in production animals. Annu Rev Anim Biosci. 2, 469-486. https://doi.org/10.1146/annurev-animal-022513-114149 PMid:25384152
Copyright
© 2022 Shkromada O. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Conflict of Interest Statement
The authors have declared that no competing interests exist.
Citation Information
Macedonian Veterinary Review. Volume 45, Issue 2, Pages 209-214, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: 10.2478/macvetrev-2022-0023, 2022