Short Communications
Use of probiotic Bacillus megaterium NCH 55 for treatment of subclinical mastitis in cows – preliminary study
Oksana Shkromada ,
Alina Pikhtirova * ,
Ewa Pecka-Kiełb ,
Oleksandr Skliar ,
Yurii Musiienko

Mac Vet Rev 2022; 45 (2): 209 - 214

10.2478/macvetrev-2022-0023

Received: 17 November 2021

Received in revised form: 10 May 2022

Accepted: 29 July 2022

Available Online First: 02 September 2022

Published on: 15 October 2022

Correspondence: Alina Pikhtirova, a.pikhtirova@med.sumdu.edu.ua
PDF HTML

Abstract

The development and implementation of new and safe means of treating subclinical mastitis (SM) in the production process remains a pressing problem. Our study aimed to investigate the therapeutic effect of the Bacillus megaterium NCH 55 strain on cow SM. All animals with signs of SM were fed with a basic diet with probiotic’s addition of 15 g/per day. The experiment was conveyed in 30 consecutive days. Milk and blood were collected on the 7th, 15th, and 30th day of the experiment. Daily milk yield was increased by 32.2% and somatic cell count was decreased from 290.00±32.12 to 96.80±39.03 ths/cm3. A decrease in inflammation was indicated by a decrease in POM370 (by 2.2 times) and POM430 (by 2.8 times). No significant changes in the blood serum indices of cows were observed. A probiotic’s positive effect has been established on the treatment of SM. The probiotic B. megaterium NСH 55 can be considered as an alternative to antibiotics and other chemotherapeutic drugs for treating SM in cows.

Keywords: cow, mastitis, milk, probiotics, Bacillus megaterium


References

  1. Ruegg, P.L. (2017). 100-Year Review: Mastitis detection, management, and prevention. J Dairy Sci. 100(12): 10381-10397. https://doi.org/10.3168/jds.2017-13023 PMid:29153171
  2. Le Marechal, C., Thiéry, R., Vautor, E., Loir, Y.L. (2011). Mastitis impact on technological properties of milk and quality of milk products - A Review. Dairy Sci Technol. 91, 247-282. https://doi.org/10.1007/s13594-011-0009-6
  3. Pecka, E., Zachwieja, A., Tumanowicz. J. (2013). Technological parameters of milk depending on the cow housing system, nutrition system, age and number of somatic cells. Przemysł Chem. 92(6): 1087-1091.
  4. Shkromada, O., Skliar, O., Pikhtirova, A., Gerun, I. (2019). Pathogens transmission and cytological composition of cow’s milk. Acta Vet Eurasia. 45, 73-79. https://doi.org/10.26650/actavet.2019.19004
  5. Elias, L., Balasubramanyam, A.S., Ayshpur, O.Y., Mushtuk, I.U., Sheremet, N.O., Gumeniuk, V.V., Musser, J., Rogovskyy, A.S. (2020). Antimicrobial susceptibility of Staphylococcus aureus, Streptococcus agalactiae, and Escherichia coli isolated from mastitic dairy cattle in Ukraine. Antibiotics 9(8): 469. https://doi.org/10.3390/antibiotics9080469 PMid:32752205 PMCid:PMC7459615
  6. Mushtaq, S., Shah, A.M., Shah, A., Lone, S.A., Hussain, A., Hassan, Q.P., Ali, M.N. (2018). Bovine mastitis: an appraisal of its alternative herbal cure. Microb Pathog. 114, 357-361. https://doi.org/10.1016/j.micpath.2017.12.024 PMid:29233776
  7. Vary, P.S. (1994). Prime time for Bacillus megaterium. Microb. 140(5): 1001-1013. https://doi.org/10.1099/13500872-140-5-1001 PMid:8025666
  8. Fernando, W.M.A.D.B., Flint, S.H. (2011). Role of probiotics and dietary fibre in maintaining healthy gut flora. Probiotics: Sources, Types and Health Benefits (pp. 1-52).
  9. Espinosa-Martos, I., Jiménez, E., de Andrés, J., Rodríguez-Alcalá, L.M., Tavárez, S., Manzano, S., Fernández, L., et al. (2016). Milk and blood biomarkers associated to the clinical efficacy of a probiotic for the treatment of infectious mastitis. Benef Micr. 7(3): 305-318. https://doi.org/10.3920/BM2015.0134 PMid:26925605
  10. Clemente, J.C., Manasson, J., Scher, J.U. (2018). The role of the gut microbiome in systemic inflammatory disease. BMJ 360, j5145. https://doi.org/10.1136/bmj.j5145 PMid:29311119 PMCid:PMC6889978
  11. Tagg, J.R., Dajani, A.S., Wannamaker, L.W. (1976). Bacteriocins of gram-positive bacteria. Bac Rev. 40(3): 722-756. https://doi.org/10.1128/br.40.3.722-756.1976 PMid:791239 PMCid:PMC413978
  12. Abriouel, H., Franz, C.M.A.P., Omar, N.B., Galvez, A. (2011). Diversity and applications of Bacillus bacteriocins. FEMS Microbiol Rev. 35(1): 201-232. https://doi.org/10.1111/j.1574-6976.2010.00244.x PMid:20695901
  13. Yao, J., Wang, L., Zhang, W., Liu, M., Niu, J. (2020). Effects of Bacillus megaterium on growth performance, serum biochemical parameters, antioxidant capacity, and immune function in suckling calves. Open Life Sci. 15(1): 1033-1041. https://doi.org/10.1515/biol-2020-0106 PMid:33817289 PMCid:PMC7874550
  14. Wang, Y., Nan, X., Zhao, Y., Jiang, L., Wang, M., Wang, H., Zhang, F., et al. (2021). Rumen microbiome structure and metabolites activity in dairy cows with clinical and subclinical mastitis. J Anim Sci Biotechnol. 12, 36. https://doi.org/10.1186/s40104-020-00543-1 PMid:33557959 PMCid:PMC7869221
  15. Percie du Sert, N., Ahluwalia, A., Alam, S., Avey, M.T., Baker, M., Browne, W.J., Clark, A., et al. (2020). Reporting animal research: explanation and elaboration for the ARRIVE guidelines 2.0. PloS Biol. 18 (7): e3000411. https://doi.org/10.1371/journal.pbio.3000411 PMid:32663221 PMCid:PMC7360025
  16. Bhulto, A.L., Murry, R.D., Woldehiwet, Z. (2012). California mastitis test scores as indicators of subclinical intramammary infections at the end of lactation in dairy cows. Res Vet Sci. 92 (1): 13-17. https://doi.org/10.1016/j.rvsc.2010.10.006 PMid:21074231
  17. Reznick, A.Z., Packer, L. (1994). Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 233, 357-363. https://doi.org/10.1016/S0076-6879(94)33041-7
  18. Cattaneo, L., Piccioli-Cappelli, F., Lopreiato, V., Lovotti, G., Arrigoni, N., Minuti, A., Trevisi, E. (2021). Drying-off cows with low somatic cell count with or without antibiotic therapy: A pilot study addressing the effects on immunometabolism and performance in the subsequent lactation. Livest Sci. 254, 104740. https://doi.org/10.1016/j.livsci.2021.104740
  19. Niemi, R.E., Hovinen, M., Vilar, M.J., Simojoki, H., Rajala-Schultz, P.J. (2021). Dry cow therapy and early lactation udder health problems – Associations and risk factors. Prev Vet Med. 188, 105268. https://doi.org/10.1016/j.prevetmed.2021.105268 PMid:33530013
  20. Deng, B., Wang, L., Ma, Q., Yu, T., Liu, D., Dai, Y., Zhao, G. (2021). Genomics analysis of Bacillus megaterium 1259 as a probiotic and its effects on performance in lactating dairy cows. Animals 11(2): 397. https://doi.org/10.3390/ani11020397 PMid:33557352 PMCid:PMC7914491
  21. Forsbäck, L., Lindmark-Månsson, H., Andrén, A., Svennersten-Sjaunja, K. (2010). Evaluation of quality changes in udder quarter milk from cows with low-to-moderate somatic cell counts. Animal 4(4): 617-626. https://doi.org/10.1017/S1751731109991467 PMid:22444049
  22. Ogola, H., Shitandi, A., Nanua, J. (2007). Effect of mastitis on raw milk compositional quality. J Vet Sci. 8(3): 237-242. https://doi.org/10.4142/jvs.2007.8.3.237 PMid:17679769 PMCid:PMC2868129
  23. Wall, S.B., Oh, J-Y., Diers, A.R., Landar, A. (2012). Oxidative modification of proteins: an emerging mechanism of cell signaling. Front Physiol. 3, 369. https://doi.org/10.3389/fphys.2012.00369 PMid:23049513 PMCid:PMC3442266
  24. Yeoman, C.J., White, B.A. (2014). Gastrointestinal tract microbiota and probiotics in production animals. Annu Rev Anim Biosci. 2, 469-486. https://doi.org/10.1146/annurev-animal-022513-114149 PMid:25384152


Copyright

© 2022 Shkromada O. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Conflict of Interest Statement

The authors have declared that no competing interests exist.

Citation Information

Macedonian Veterinary Review. Volume 45, Issue 2, Pages 209-214, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: 10.2478/macvetrev-2022-0023, 2022