Original Scientific Article
Changes in the lactoferrin concentration in the bovine colostrum during postpartum period
Biljana Trajkovska*,
Ljupche Kochoski,
Gordana Dimitrovska,
Zehra Hajrulai-Musliu,
Risto Uzunov,
Vladimir Petkov,
Prarabdh C. Badgujar

Mac Vet Rev 2022; 45 (2): 177 - 185


Received: 18 March 2022

Received in revised form: 23 May 2022

Accepted: 03 June 2022

Available Online First: 16 September 2022

Published on: 15 October 2022

Correspondence: Biljana Trajkovska, biljana.trajkovska@uklo.edu.mk


The health condition of the mammary gland is highly crucial for obtaining good quality colostrum. The lactoferrin (LF), as an iron-binding protein, plays a key role in the defense mechanisms of the mammary gland due to its’ bacteriostatic properties. The study aimed to investigate the factors affecting the LF concentration in the bovine colostrum milk during the postpartum period, and the effect of somatic cell count (SCC) on the LF concentration and milk composition. The cows were randomly selected at a dairy farm in Pelagonia region. Colostrum samples from 12 cows were collected. Samples were taken at different time intervals after parturition, 1, 6, 12, 24, 48, 72, 96, and 120 h after parturition. Cows in their second parity were found to have higher levels of LF compared to cows in the third and higher parity (p>0.05). Time had a significant effect on the LF concentration (p<0.01), with the highest value recorded 1 h after parturition remaining stable for one hour. LF concentration and SCC in the colostrum showed a weak positive correlation (r=0.40; p<0.01). The highest LF concentration was noticed when SCC was above 800,000 cells/mL. In conclusion, the colostrum LF concentration was significantly affected by the interactions of the two factors, i.e., time after parturition and SCC (p<0.05). Milk composition was affected by elevated SCC. Parity showed no association with LF. The SCC can be used as a reliable means of assessing colostrum quality.

Keywords: lactoferrin, somatic cell counts, colostrum, postpartum, cow milk


  1. Jaster, E.H. (2005). Evaluation of quality, quantity, and timing of colostrum feeding on immunoglobulin G1 absorption in Jersey calves. J Dairy Sci. 88(1): 296-302. https://doi.org/10.3168/jds.S0022-0302(05)72687-4
  2. Blum, J.W., Hammon, H. (2000). Colostrum effects on the gastrointestinal tract, and on nutritional, endocrine and metabolic parameters in neonatal calves. Livest Prod Sci. 66(2): 151-159. https://doi.org/10.1016/S0301-6226(00)00222-0
  3. Lorenz, I. (2021). Calf health from birth to weaningan update. Ir Vet J. 74, 5. https://doi.org/10.1186/s13620-021-00185-3 PMid:33726860 PMCid:PMC7968278
  4. Vega-Bautista, A., de la Garza, M., Carrero, J.C., Campos-Rodríguez, R., Godínez-Victoria, M., Drago-Serrano, M.E. (2019). The impact of lactoferrin on the growth of intestinal inhabitant bacteria. Int J Mol Sci. 20(19): 4707. https://doi.org/10.3390/ijms20194707 PMid:31547574 PMCid:PMC6801499
  5. Puppel, K., Gołębiewski, M., Grodkowski, G., Slósarz, J., Kunowska-Slósarz, M., Solarczyk, P., Łukasiewicz, M., Balcerak, M., Przysucha, T. (2019). Composition and factors affecting quality of bovine colostrum: A review. Animals 9(12): 1070. https://doi.org/10.3390/ani9121070 PMid:31810335 PMCid:PMC6940821
  6. Fransson, G.B., Lönnerdal, B. (1980). Iron in human milk. J Pediatr. 96(3): 380-384. https://doi.org/10.1016/S0022-3476(80)80676-7
  7. Kehoe, S.I., Jayarao, B.M., Heinrichs, A.J. (2007). A survey of bovine colostrum composition and colostrum management practices on Pennsylvania dairy farms. J Dairy Sci. 90(9): 4108-4116. https://doi.org/10.3168/jds.2007-0040 PMid:17699028
  8. Quigley, J. (2002). [Internet]. Calf Note#90 – Iron binding antimicrobial protein. Available at: https:// www.calfnotes.com/pdffiles/CN090.pdf
  9. Quigley, J. (2011). [Internet]. Calf Note# 162-Feeding antibiotics to calves and its effect on antimicrobial resistance. Available at: http://calfnotes.com/pdffiles/ CN162.pdf
  10. Kume, S.I., Tanabe, S. (1993). Effect of parity on colostral mineral concentrations of Holstein cows and value of colostrum as a mineral source for newborn calves. J Dairy Sci. 76(6): 1654-1660. https://doi.org/10.3168/jds.S0022-0302(93)77499-8
  11. Rocha, T.G., Franciosi, C., Nociti, R.P., Silva, P.C., Sampaio, A.A.M., Fagliari, J.J. (2014). Influence of parity on concentrations of enzymes, proteins, and minerals in the milk of cows. Arq Bras Med Vet Zootec. 66(1): 315-320. https://doi.org/10.1590/S0102-09352014000100043
  12. Gaunt, S.N., Raffio, N., Kingsbury, E.T., Damon Jr, R.A., Johnson, W.H., Mitchell, B.A. (1980). Variation of lactoferrin and mastitis and their heritabilities. J Dairy Sci. 63(11): 1874-1880. https://doi.org/10.3168/jds.S0022-0302(80)83154-7
  13. Tsuji, S., Hirata, Y., Mukai, F., Ohtagaki, S. (1990). Comparison of lactoferrin content in colostrum between different cattle breeds. J Dairy Sci. 73(1): 125-128. https://doi.org/10.3168/jds.S0022-0302(90)78654-7
  14. International Organization for Standardization (1999). ISO 9622:1999 Whole milk-Determination of milkfat, protein and lactose content-Guidance on the operation of mid-infrared instruments. Geneva; 1999.
  15. International Organization for Standardization (2010). ISO 13366-2:2010 Milk - Enumeration of somatic cells - Part 2 Guidance on the operation of fluoro-opto-electronic counters. Geneva 2010.
  16. Trajkovska, B., Kochoski, Lj., Dimitrovska, G., Hajrulai-Musliu, Z., Uzunov, R., Petkov, V., Davkov, F. (2021). Changes in the lactoferrin concentration at drying off period. Horizons-series B.9: 83-90. https://doi.org/10.20544/HORIZONS.B.09.2. P09
  17. Trajkovska, B., Kochoski, Lj., Petrovski, K., Dimitrovska, G., Hajrulai-Musliu, Z., Uzunov, R., Petkov, V. (2021). Impact of mammary gland infective status on the concentration of lactoferrin in cow's milk. J Hyg Eng Des. 36, 91-95.
  18. Sobczuk-Szul, M., Wielgosz-Groth, Z., Wronski, M., Rzemieniewski, A. (2013). Changes in the bioactive protein concentrations in the bovine colostrum of Jersey and Polish Holstein-Friesian cows. Turk J Vet Anim Sci. 37(1): 43-49. https://doi.org/10.3906/vet-1107-42
  19. Adam, V., Zitka, O., Dolezal, P., Zeman, L., Horna, A., Hubalek, J., Sileny, J., Krizkova, S., Trnkova, L., Kizek, R. (2008). Lactoferrin isolation using monolithic column coupled with spectrometric or micro-amperometric detector. Sensors (Basel) 8(1): 464-487. https://doi.org/10.3390/s8010464 PMid:27879717 PMCid:PMC3681142
  20. Yoshida, S., Wei, Z., Shinmura, Y., Fukunaga, N. (2000). Separation of lactoferrin-a and-b from bovine colostrum. J Dairy Sci. 83(10): 2211-2215. https://doi.org/10.3168/jds.S0022-0302(00)75104-6
  21. Quigley, Jim. (2008). [Internet]. Calf Notes#133- Variation in colostrum composition. Available at: https://calfnotes.com/pdffiles/CN133.pdf
  22. Robblee, E.D., Erickson, P.S., Whitehouse, N.L., McLaughlin, A.M., Schwab, C.G., Rejman, J.J., Rompala, R.E. (2003). Supplemental lactoferrin improves health and growth of Holstein calves during the preweaning phase. J Dairy Sci. 86(4): 1458-1464. https://doi.org/10.3168/jds.S0022-0302(03)73729-1
  23. Trajkovska, B., Kocoski, Lj., Makarijoski, B. (2014). Changes in chemical composition and somatic cell count in bovine milk during colostrum period. Horizon Int Sci J. 1, 133-139.
  24. Hagiwara, S., Kawai, K., Anri, A., Nagahata, H. (2003). Lactoferrin concentrations in milk from normal and subclinical mastitic cows. J Vet Med Sci. 65(3): 319-323. https://doi.org/10.1292/jvms.65.319 PMid:12679560
  25. Quigley, J. (2010). [Internet]. Calf Note #151 - Colostrum somatic cells and calf health. Available at: https://calfnotes.com/pdffiles/CN151.pdf
  26. O'Brien, B., Berry, D., Kelly, Ph., Meaney, W.J., O'Callaghan, E.J. (2009). A study of the somatic cell count (SCC) of Irish milk from herd management and environmental perspectives. Teagasc, Moorepark Dairy Production Research Centre 2009. Fermoy: Co.Cork
  27. Ferdowsi Nia, E., Nikkhah, A., Rahmani, H.R., Alikhani, M., Mohammad Alipour, M., Ghorbani, G.R. (2010). Increased colostral somatic cell counts reduce pre‐weaning calf immunity, health and growth. J Anim Physiol Anim Nutr. 94(5): 628-634. https://doi.org/10.1111/j.1439-0396.2009.00948.x PMid:20050956
  28. Puppel, K., Gołębiewski, M., Grodkowski, G., Solarczyk, P., Kostusiak, P., Klopčič, M., Sakowski, T. (2020). Use of somatic cell count as an indicator of colostrum quality. PLoS One. 15(8): e0237615. https://doi.org/10.1371/journal.pone.0237615 PMid:32780761 PMCid:PMC7418990
  29. Rice, D.N., Bodman, G.R. (1993). G93-1151 The somatic cell count and milk quality. Historical materials from University of Nebraska-Lincoln Extension. 489.
  30. Le Roux, Y., Laurent, F., Moussaoui, F. (2003). Polymorphonuclear proteolytic activity and milk composition change. Vet Res. 34(5): 629-645. https://doi.org/10.1051/vetres:2003021 PMid:14556698
  31. Penchev Georgiev, I. (2008). Differences in chemical composition between cow colostrum and milk. Bulg J Vet Med. 11(1): 3-12.
  32. Ontsouka, C.E., Bruckmaier, R.M., Blum, J.W. (2003). Fractionized milk composition during removal of colostrum and mature milk. J Dairy Sci. 86(6): 2005-2011. https://doi.org/10.3168/jds.S0022-0302(03)73789-8
  33. Fisher, H. (2000). Colostrum: properties, functions, and importance. The relationship between the immunoglobulin concentration in Holstein colostrum and the total serum protein in Holstein heifer calves. Washington State University
  34. Schroeder Jr, H.W., Cavacini, L. (2010). Structure and function of immunoglobulins. J Allergy Clin Immunol. 125(2 Suppl 2): S41-S52. https://doi.org/10.1016/j.jaci.2009.09.046 PMid:20176268 PMCid:PMC3670108
  35. Cabral, R.G., Chapman, C.E., Aragona, K.M., Clark, E., Lunak, M., Erickson, P.S. (2016). Predicting colostrum quality from performance in the previous lactation and environmental changes. J Dairy Sci. 99(5): 4048-4055. https://doi.org/10.3168/jds.2015-9868 PMid:26971147
  36. Zabielski, R., Le Huërou-Luron, I., Guilloteau, P. (1999). Development of gastrointestinal and pancreatic functions in mammalians (mainly bovine and porcine species): influence of age and ingested food. Reprod Nutr Dev. 39(1): 5-26. https://doi.org/10.1051/rnd:19990101 PMid:10222497
  37. Abd El-Fattah, A.M., Abd Rabo, F.H.R., EL-Dieb, S.M., El-Kashef, H.A. (2012). Changes in composition of colostrum of Egyptian buffaloes and Holstein cows. BMC Vet Res. 8, 19. https://doi.org/10.1186/1746-6148-8-19 PMid:22390895 PMCid:PMC3344693


© 2022 Trajkovska B. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Conflict of Interest Statement

The authors have declared that no competing interests exist.

Citation Information

Macedonian Veterinary Review. Volume 45, Issue 2, Pages 177-185, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: 10.2478/macvetrev-2022-0026, 2022