Original Scientific Article
Toxic effects of sodium lauryl sulfate on antioxidant defense system and DNA damage in fish primary hepatocyte cultures
Aslı Ç. Yeltekin*,
Ahmet R. Oğuz

Mac Vet Rev 2022; 45 (2): 169 - 175


Received: 22 September 2021

Received in revised form: 01 September 2022

Accepted: 05 September 2022

Available Online First: 15 September 2022

Published on: 15 October 2022

Correspondence: Aslı Ç. Yeltekin, aslicyeltekin@gmail.com


Synthetic detergents which have a major role in environmental pollution accumulate over time and reach levels that harm nature. The surfactants which are abundantly used as cleaning components are discharged into the Van Lake with the sewage water. These chemicals accumulating in the lake may reach a level that could affect the only fish species of the lake, the Van fish. This study aimed to determine the antioxidant levels of Van fish hepatocyte cell culture medium treated with sodium lauryl sulphate (SLS) and to assess the DNA damage. The effect of SLS was assessed by its dose (1x10-5, 1x10-6, 1x10-7 M) and treatment time (24 h, 48 h). Superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), malondialdehyde (MDA), and DNA damage (8-OHdG) were determined in the SLS hepatocyte culture. SOD and GSH-Px were higher on 24 h and 48 h compared to the control group. A significant increase was observed in CAT level in the first 24 h, especially in 1x10-6 and 1x10-5 M concentration. At 48 h, it was observed that the CAT level decreased significantly as the concentration increased. It was determined that MDA and 8-OHdG levels increased depending on concentration and time. In conclusion, different concentrations of SLS affected antioxidant levels in the primary hepatocyte culture of Van Fish and were found to cause an increase in the levels of MDA and 8-OHdG.

Keywords: SLS, fish, DNA damage, antioxidants, MDA


  1. Holland, P.M., Rubingh, D.N. (1992). Mixed surfactant systems. An overview. In: P.M. Holland, D.N. Rubingh (Eds.), Mixed surfactant systems, ACS Symposium Series Vol.501 (pp. 2-30). Washington DC: American Chemical Society https://doi.org/10.1021/bk-1992-0501.ch001
  2. Alak, G., Yeltekin, A.Ç., Özgeris, F.B., et al. (2019). Therapeutic effect of N- acetyl cysteine as an antioxidant on rainbow trout’s brain in cypermethrin toxicity. Chemosphere 221, 30-36. https://doi.org/10.1016/j.chemosphere.2018.12.196 PMid:30634146
  3. Chaturvedi, V., Kumar, A. (2010). Toxicity of sodium dodecyl sulfate in fishes and animals. A review. Int J Appl Biol Pharm Technol. 1(2): 630-633.
  4. Freitas, R., Silvestro, S., Coppola, F., Costa, S., Meucci, V., Battaglia, F., Intorre, L., et al. (2020). Toxic impacts induced by Sodium lauryl sulfate in Mytilus galloprovincialis. Comp Biochem Physiol Part A Mol Integr Physiol. 242, 110656. https://doi.org/10.1016/j.cbpa.2020.110656 PMid:31927089
  5. Yeltekin, A.Ç., Sağlamer, E. (2019). Toxic and trace element levels in Salmo trutta macrostigma and Oncorhynchus mykiss trout raised in different environments. Polish J Env Stud. 28(3): 1613-1621. https://doi.org/10.15244/pjoes/90620
  6. Jimenez, B.D., Stegeman, J.J. (1990). Detoxication enzymes as indicators of environmental stress on fish. United States
  7. Bright, J. (2018). Explaining the emergence of political fragmentation on social media: the role of ideology and extremism. JCMC 23(1): 17-33. https://doi.org/10.1093/jcmc/zmx002
  8. Akdis, C.A. (2021). Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nat Rev Immunol. 21:739-751. https://doi.org/10.1038/s41577-021-00538-7 PMid:33846604
  9. Öter, Ç., Selçuk Zorer, Ö. (2020). Kinetic, isothermal and thermodynamic studies on Th(IV) adsorption by different modified activated carbons. J Radioanal Nucl Chem. 323(1): 341-351. https://doi.org/10.1007/s10967-019-06830-0
  10. Gutteridge, J.M. (1995). Lipid peroxidation and antioxidants as biomarkers of tissue damage. Clin Chem. 41(12): 1819-1828. https://doi.org/10.1093/clinchem/41.12.1819 PMid:7497639
  11. Yang, X., Li, Y., Li, Y., Ren, X., Zhang, X., Hu, D., et al. (2017). Oxidative stress-mediated atherosclerosis: mechanisms and therapies. Front Physiol. 8, 600. https://doi.org/10.3389/fphys.2017.00600 PMid:28878685 PMCid:PMC5572357
  12. Berry, M.N., Friend, D.S. (1969). High yield preparation of isolated rat liver parenchymal cells. J Cell Biol. 43(3): 506-520. https://doi.org/10.1083/jcb.43.3.506 PMid:4900611 PMCid:PMC2107801
  13. Xia, E., Rao, G., Remmen, H.V., et al. (1995). Activities of antioxidant enzymes in various tissues of male Fischer rats are altered by food restriction. J Nutr. 125(2): 195-201.
  14. Flohe, L., Otting, F. (1984). Superoxide dismutase assays. Methods Enzymol. 105, 93-104. https://doi.org/10.1016/S0076-6879(84)05013-8
  15. Aebi, H. (1984). Catalase in vitro. Methods Enzymol. 105, 121-126. https://doi.org/10.1016/S0076-6879(84)05016-3
  16. Paglia, D.E., Valentina, W.N. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med. 70(1): 158-169.
  17. Flohe, L., Gunzler, W.A. (1984). Assays of glutathione peroxidase. Methods Enzymol. 105, 114-121. https://doi.org/10.1016/S0076-6879(84)05015-1
  18. Alak, G., Ucar, A., Yeltekin, A.Ç. et al. (2018). Neuroprotective effects of dietary borax in the brain tissue ofrainbow trout (Oncorhynchus mykiss) exposed to copper-induced toxicity. Fish Physiol Biochem. 44(5): 1409-1420. https://doi.org/10.1007/s10695-018-0530-0 PMid:29959587
  19. Mis, L., Comba, B., Uslu, S., et al. (2018). Effect of wheatgrass on DNA damage, oxidative stress index and histological findings in diabetic rats. I J Morphol. 36(4): 1235-1240. https://doi.org/10.4067/S0717-95022018000401235
  20. Placer, Z.A., Cushman, L.L., Johnson. B.C. (1966). Estimation of product of lipid peroxidation (malonyldialdehyde) in biochemical systems. Anal Biochem. 16(2): 359-364. https://doi.org/10.1016/0003-2697(66)90167-9
  21. Sayeda, H.A.E., Authman, M.M.N. (2018). The protective role of Spirulina platensis to alleviate the Sodium dodecyl sulfate toxic effects in the catfish Clarias gariepinus (Burchell, 1822). Ecotoxicol Environ Saf. 163, 136-144. https://doi.org/10.1016/j.ecoenv.2018.07.060 PMid:30053583
  22. Susmi, T.S., Rebello, S., Jisha, M.S. et al. (2010). Toxic effects of sodium dodecyl sulphate on grass carp (Ctenopharyngodon idella). Fish Technol. 47(2): 157-162.
  23. Yakovenko, B.V., Tretyak, O.P., Mekhed, O.B., et al. (2018). Effect of herbicides and surfactants on enzymes of energy metabolism in European carp. Ukr J Ecol. 8(1): 948-952. https://doi.org/10.15421/2018_297
  24. Feng, T., Li, Z.B., Guo, X.Q., Guo, J.P. (2008). Effects of trichlorfon and sodium dodecyl sulphate on antioxidant defence system and acetylcholinesterase of Tilapia nilotica in vitro. Pestic Biochem Phys. 92(3): 107-113. https://doi.org/10.1016/j.pestbp.2007.10.002
  25. Jifa, W., Zhiming, Y., Xiuxian, S., You, W., Xihua, C. (2006). Comparative researches on effects of sodium dodecyl benzene sulfonate and sodium dodecyl sulphate upon Lateolabrax japonicus biomarker system. Environ Toxicol Pharmacol. 20(3): 465-470. https://doi.org/10.1016/j.etap.2005.05.006 PMid:21783627
  26. Messina, M.C., Faggio, C., Laudicella, V.A. et al. (2014). Effect of sodium dodecyl sulphate (SDS) on stress response in the Mediterranean mussel (Mytilus Galloprovincialis): Regulatory volume decrease (Rvd) and modulation of biochemical markers related to oxidative stress. Aquat Toxicol. 157, 94-100. https://doi.org/10.1016/j.aquatox.2014.10.001 PMid:25456223
  27. Suganthi, K., Sri Kumaran, N., Thenmozhi, C., et al. (2012). In vitro antioxidant activities of jelly fish Chrysaora quinquecirrha venom from southeast coast of India. Asian Pac J Trop Biomed. 2(Suppl. 1): 347-351. https://doi.org/10.1016/S2221-1691(12)60186-5
  28. Jung, H.J., Ahn, H.I., Park, J.Y. et al. (2016). Improved oral absorption of tacrolimus by a solid dispersion with hypromellose and sodium lauryl sulphate. Int J Biol Macromol. 83, 282-287. https://doi.org/10.1016/j.ijbiomac.2015.11.063 PMid:26642839
  29. Freitas, E.C., Rocha, O. (2012). Acute and chronic effects of atrazine and sodium dodecyl sulphate on the tropical freshwater cladoceran Pseudosida ramosa. Ecotoxicology 21(5): 1347-1357. https://doi.org/10.1007/s10646-012-0888-1 PMid:22434152
  30. Mei, L., McClements, J.D., Decker, E.A. (1999). Lipid oxidation in emulsions as affected by charge status of antioxidants and emulsion droplets. J Agric Food Chem. 47(6): 2267-2273. https://doi.org/10.1021/jf980955p PMid:10794621
  31. Costa, S., Coppola, F., Pretti, C., Intorre, L., Meucci, V., Soares, A.M.V.M., Freitas, R., Solé, M. (2020). The influence of climate change related factors on the response of two clam species to diclofenac. Ecotoxicol Environ Saf. 189, 109899. https://doi.org/10.1016/j.ecoenv.2019.109899 PMid:31771782
  32. Alak, G., Parlak, V., Yeltekin, A.Ç. et al. (2019). The protective effect exerted by dietary borax on toxicity metabolism in rainbow trout (Oncorhynchus mykiss) tissues. Comp Biochem Physiol C Toxicol Pharmacol. 216, 82-92. https://doi.org/10.1016/j.cbpc.2018.10.005 PMid:30419360
  33. Yeltekin, A.Ç., Oğuz, A.R. (2018). Antioxidant responses and DNA damage in primary hepatocytes of Van fish (Alburnus tarichi, Güldenstadt 1814) exposed to nonylphenol or octylphenol. Drug Chem Toxicol. 41(4): 415-423. https://doi.org/10.1080/01480545.2018.1461899 PMid:29722550
  34. Alak, G., Ucar, A., Yeltekin, A.Ç. et al. (2019). Neurophysiological responses in the brain tissues of rainbow trout (Oncorhynchus mykiss) treated with bio-pesticide. Drug Chem Toxicol. 42(2): 203-209. https://doi.org/10.1080/01480545.2018.1526180 PMid:30449198


© 2022 Yeltekin A.Ç. This is an open-access article published under the terms of the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Conflict of Interest Statement

The authors have declared that no competing interests exist.

Citation Information

Macedonian Veterinary Review. Volume 45, Issue 2, Pages 169-175, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: 10.2478/macvetrev-2022-0027, 2022