Original Scientific Article
Pharmacokinetic criteria of ketoprofen and its cyclooxygenase-2 inhibition in mice: influence of xylazine administration
Khalil Abdullah Khalil ,
Yaareb Jaafer Mousa * ,
Muna Hazim Alzubaidy

Mac Vet Rev 2023; 46 (1): 27 - 33

10.2478/macvetrev-2022-0031

Received: 14 February 2022

Received in revised form: 29 November 2022

Accepted: 01 December 2022

Available Online First: 29 December 2022

Published on: 15 March 2023

Correspondence: Yaareb Jaafer Mousa, yarub204@uomosul.edu.iq
PDF HTML

Abstract

The objective of this study was to examine the effect of ketoprofen with or without combination with xylazine on the level of cyclooxygenase-2 in mice. The intraperitoneal (i.p.) dose of ketoprofen and xylazine that caused an analgesic response in half of the mouse population was 1.26 mg/kg and 6.63 mg/kg, respectively. Serum cyclooxygenase-2 concentration (activity) in the control mice was 16.94 ng/ml. The ketoprofen-treated group (2.52 mg/kg, i.p.) decreased the cyclooxygenase-2 concentration by 58% (7.16 ng/ml). The combined ketoprofen and xylazine treatment (13.26 mg/kg, i.p.) decreased the cyclooxygenase-2 by 94% (0.98 ng/ml). The ketoprofen plasma concentration in the combined treatment group was significantly higher compared to the ketoprofen treatment group. Ketoprofen plasma concentrations measured at 0.25, 0.5, 1, 2, 4, and 24 hours were 19.07, 18.94, 14.66, 6.53, 5.44, and 5.54 μg/ml, respectively. Plasma concentrations of ketoprofen and xylazine were raised to 28.74, 29.74, 15.32, 13.04, 14.64, and 11.95 μg/ml or by 51%, 56%, 5%, 100%, 169%, and 116%, respectively. Ketoprofen pharmacokinetic variables were increased (AUC0-∞ (515%), AUMC0-∞ (2389%), MRT (305%), t1/2β (375%), Tmax (100%), and Cmax (55%)), while other values were decreased (Kel (79%), Vss (25%), and Cl (88%)). Our findings suggested a synergistic interaction between ketoprofen and xylazine on the level of cyclooxygenase-2 (pharmacodynamic interaction) which was exerted by modification of the ketoprofen pharmacokinetic properties in mice.

Keywords: cyclooxygenase-2, ketoprofen, mice, pharmacokinetics, xylazine


References

1. Botting, R.M. (2006). Inhibitors of cyclooxygenases: mechanisms, selectivity and uses. J Physiol Pharmacol. 57, 113-124. https://pubmed.ncbi.nlm.nih.gov/17218763/
2. Meek, I.L., Mart, A.F.J., van der, L.,Vonkeman, H.E. (2010). Non-steroidal anti-inflammatory drugs: an overview of cardiovascular risks. Pharmaceut. 3, 2146-2162. https://doi.org/10.3390/ph30721463. Zarghi, A., Arfaei, S. (2011). Selective COX-2 inhibitors: a review of their structure-activity relationships. Iran J Pharm Res. 10, 655-683. https://pubmed.ncbi.nlm.nih.gov/24250402/
3. Zarghi, A., Arfaei, S. (2011). Selective COX-2 inhibitors: a review of their structure-activity relationships. Iran J Pharm Res. 10, 655-683. https://pubmed.ncbi.nlm.nih.gov/24250402/
4. Waller, D.G., Sampson, A.P. (2018). Medical pharmacology and therapeutics. Netherlands: Elsevier https://www.elsevier.com/books/medical-pharmacology-and-therapeutics/waller/978-0-7020-7167-6
5. Lockwood, P.W., Johnson, J.C., Katz, T.L. (2003). Clinical efficacy of flunixin, carprofen and ketoprofen as adjuncts to the antibacterial  treatment of bovine respiratory disease. Vet Rec. 152, 392-394. https://doi.org/10.1136/vr.152.13.392
6. Lascelles, B.D.X., Court, M.H., Hardie, E.M., Robertson, S.A. (2007). Nonsteroidal antiinflammatory drugs in cats: a review. Vet Anaesth Analg. 34, 228-250. https://doi.org/10.1111/j.1467-2995.2006.00322.x
7. Naidoo, V., Wolter, K., Cromarty, D., Diekmann, M., Duncan, N., Meharg, A.A., Taggart, M.A., Venter, L., Cuthbert, R. (2010). Toxicity of non-steroidal antiinflammatory drugs to Gyps vultures: a new threat from ketoprofen. Biol Lett. 6, 339-341. https://doi.org/10.1098/rsbl.2009.0818
8. Boothe, D.M. (2008). Small animal clinical pharmacology. Philadelphia: Saunders Elsevier https://www.elsevier.com/books/small-animal-clinical-pharmacology-and-therapeutics/boothe/978-0-7216-0555-5
9. Erickson, R.L., Blevins, C.E., Souza, D.C., Marx, J.O. (2019). Alfaxalone-xylazine anesthesia in laboratory mice (Mus musculus). J Am Assoc  Lab Anim Sci. 58, 30-39. https://doi.org/10.30802/AALAS-JAALAS-18-000010
10. Dixon, W.J. (1980). Efficient analysis of experimental observations. Annu Rev Pharmacol Toxicol. 20, 441-462. https://doi.org/10.1146/annurev.pa.20.040180.002301
11. Mousa, Y.J. (2019). Analgesic, antipyretic and antiinflammatory efficacy of ketorolac in the chicks. Ind J Anim Sci. 89, 1086-1090. http://epubs.icar.org.in/ejournal/index.php/IJAnS/article/view/95003
12. Mousa, Y.J., Al-Zubaidy, M.H.I., Amin, S.M. (2021). Age-related anesthetic effect of ketamine in the chickens. Iraqi J Vet Sci. 35, 501-506. 
https://doi.org/10.33899/ijvs.2020.127100.1458
13. Mousa, Y.J., Mahmood, M.B. (2022). Effect of meloxicam coadministration on the anaesthetic potency of thiopental sodium in a chick model. Vet Stanica. 53, 155-163. https://doi.org/10.46419/vs.53.2.5
14. Mousa, Y.J. (2021). Effect of nefopam in normal chickens and its relationship to hydrogen peroxideinduced oxidative stress. Iraqi J Vet Sci.  35, 7-12. https://doi.org/10.33899/ijvs.2021.127013.1433
15. Le Bars, D., Gozarriu, M., Gadden, S.W. (2001). Animal models of nociception. Pharmacol Rev. 53, 597-652. https://pubmed.ncbi.nlm.nih.gov/11734620/
16. Acharya, S.D., Ullal, S.D., Padiyar, S., Rao, Y.D., Upadhyaya, K., Pillai, D., Raj, V. (2011). Analgesic effect of extracts of Alpiniagalanga  rhizome in mice. J Chin Integ Med. 9, 100-104. https://doi.org/10.3736/jcim20110116
17. Shaban, Kh.A., Ibrahim, M.H., Faris, G.A. (2020). Evaluation of the antinociceptive effect of xylazine and it’s interaction with metoclopramide in the acute pain model in mice. Iraqi J Vet Sci. 34, 383-388. https://doi.org/10.33899/ijvs.2019.126070.1226
18. O’Banion, M.K. (1999). Cyclooxygenase-2: molecular biology, pharmacology, and neurobiology. Crit Rev Neurobiol. 13, 45-82. https://doi.org/10.1615/critrevneurobiol.v13.i1.30
19. Dong, L., Vecchio, A.J., Sharma, N.P., Jurban, B.J., Malkowski, M.G., Smith, W.L. (2011). Human cyclooxygenase-2 is a sequence homodimer that functions as a conformational heterodimer. J Biol Chem. 27, 19035-19046. https://doi.org/10.1074/jbc.M111.231969
20. Kurumbail, R.G., Kiefer, J.R., Marnett, L.J. (2001). Cyclooxygenase enzymes: catalysis and inhibition. Curr Opin Struct Biol. 11, 752-60. https://doi.org/10.1016/s0959-440x(01)00277-9
21. Zafar, F., Shoaib, M.H., Naz, A., Yousuf, R.I., Ali, H. (2013). Determination of ketoprofen in human plasma by RP-HPLC. Am J Analy Chem. 4, 252-257. https://doi.org/10.4236/ajac.2013.45031
22. Zhang, Y., Huo, M., Zhou, J., Xie, S. (2010). PKSolver: An add-in program for pharmacokinetic and pharmacodynamic data analysis in Microsoft Excel. Comput Meth Prog Biomed. 99, 306-314. https://doi.org/10.1016/j.cmpb.2010.01.007
23. Katz, M.H. (2011). Multivariable analysis: a practical guide for clinicians and public health researchers. New York: Cambridge University Press https://assets.cambridge.org/97805217/60980/frontmatter/9780521760980_frontmatter.pdf
24. Girard, P., Verniers, D., Coppé, M.C., Pansart, Y., Gillardin, J.M. (2008). Nefopam and ketoprofen synergy in rodent models of antinociception. Europ J Pharmacol. 584, 263-271. https://doi.org/10.1016/j.ejphar.2008.02.012
25. Levoin, N., Blondeau, C., Guillaume, C., Grandcolas, L., Chretien, F., Jouzeau, J.Y., Benoit, E., Chapleur, Y., Netter, P., Lapicque, F. (2004). Elucidation of the mechanism of inhibition of cyclooxygenases by acyl-coenzyme A and acylglucuronic conjugates of ketoprofen. Biochem Pharmacol. 68, 1957-1969. https://doi.org/10.1016/j.bcp.2004.07.015
26. Foye, W.O., Lemke, T.L., Williams, D.A. (2008). Foye’s principles of medical chemistry. Philadelphia: Lippincott Williams and Wilkins https://www.worldcat.org/title/foyes-principles-of-medicinal-chemistry/oclc/145942325


Copyright

© 2022 Khalil  K.A. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Conflict of Interest Statement

The authors declared that they have no potential lict of interest with respect to the authorship and/or publication of this article.

Citation Information

Macedonian Veterinary Review. Volume 46, Issue 1, Pages 27-33, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: 10.2478/macvetrev-2022-0031, 2022