Original Scientific Article
Evaluation of the corrected QT interval with Bazett’s Method in Cavalier King Charles Spaniel dogs with myxomatous mitral valve disease
Hande Sağoğlu ,
Remzi Gönül * ,
Lora Koenhemsi ,
Emine Merve Alan ,
Suzan Murat ,
Ashkan Seddigh Nia ,
Mehmet Erman Or

Mac Vet Rev 2023; 46 (1): 61 - 67

10.2478/macvetrev-2023-0014

Received: 29 August 2022

Received in revised form: 18 January 2023

Accepted: 21 February 2023

Available Online First: 01 March 2023

Published on: 15 March 2023

Correspondence: Remzi Gönül, gonul@iuc.edu.tr
PDF HTML

Abstract

Myxomatous mitral valve disease (MMVD) is one of the most common heart diseases in dogs. The disease progresses faster in Cavalier King Charles Spaniel (CKCS) dogs and occurs at an earlier age. QT interval length reflects abnormalities in ventricular repolarization which may predispose to the formation of fatal arrhythmias such as torsades de pointes. A fast and accurate assessment is therefore essential. The study aimed to examine the changes in QT duration in MMVD cases of CKCS and to calculate the corrected QT durations with Bazett’s formula in various stages of the disease. The study included 20 CKCS dogs of both genders, various ages and weights, and different stages of MMVD (n=6 in B1 stage, n=6 in B2 stage, and n=8 in C stage), and 5 healthy CKCS which were included in the control group. Clinical, radiological, hematological, biochemical, echocardiographic, and electrocardiographic examinations were performed. The corrected QT interval duration in the MMVD group was longer than the control (p<0.05). However, there was no significant difference between B1, B2, and C. It was concluded that the corrected QT interval can give a significant distinction between healthy and MMVD CKCS dogs.

Keywords: Cavalier, myxomatous, mitral valve, QT


References

1.Parker, H.G., Kilroy-Glynn, P. (2012). Myxomatous mitral valve disease in dogs: does size matter? J Vet Cardiol. 14(1): 19-29. https://doi.org/10.1016/j.jvc.2012.01.006 PMid:22356836 PMCid:PMC3307894
2. Madsen, M.B., Olsen, L.H., Häggström, J., Höglund, K., Ljungvall, I., Falk, T., Wess, G., et al. (2011). Identification of 2 loci associated with development of myxomatous mitral valve disease in
Cavalier King Charles Spaniels. J Hered. 102(Suppl 1): S62-S67. https://doi.org/10.1093/jhered/esr041 PMid:21846748
3. Markby, G.R., Macrae, V.E., Corcoran, B.M., Summers, K.M. (2020). Comparative transcriptomic profiling of myxomatous mitral valve disease in the cavalier King Charles spaniel. BMC Vet Res. 16(1): 350. https://doi.org/10.1186/s12917-020-02542-w PMid:32967675 PMCid:PMC7509937
4. Lewis, T., Swift, S., Woolliams, J.A., Blotta, S. (2011). Heritability of premature mitral valve disease in Cavalier King Charles spaniels. Vet J. 188(1): 73-76.  https://doi.org/10.1016/j.tvjl.2010.02.016     PMid:20347358
5. Beardow, A.W., Buchanan, J.W. (1993). Chronic mitral valve disease in cavalier King Charles spaniels: 95 cases (1987-1991). J Am Vet Med Assoc. 203(7): 1023-1029.
6. Summers, J.F., O’Neill, D.G., Church, D.B., Thomson, P.C., McGreevy, P.D., Brodbelt, D.C. (2015). Prevalence of disorders recorded in Cavalier King Charles Spaniels attending primary-care veterinary practices in England. Canine Genet Epidemiol. 2, 4. https://doi.org/10.1186/s40575-015-0016-7 PMid:26401332 PMCid:PMC4579365
7. Ljungvall, I., Ahlstrom, C., Höglund, K., Hult, P., Kvart, C., Borgarelli, M., Ask, P., Häggström, J. (2009). Use of signal analysis of heart sounds and murmurs to assess severity of mitral valve regurgitation attributable to myxomatous mitral valve disease in dogs. Am J Vet Res. 70(5): 604-613. https://doi.org/10.2460/ajvr.70.5.604 PMid:19405899
8. Pomerance, A., Whitney, J.C. (1970). Heart valve changes common to man and dog: a comparative study. Cardiovasc Res. 4(1): 61-66. https://doi.org/10.1093/cvr/4.1.61 PMid:5416844
9. Edwards, N.J. (1987). Balton’s handbook of canine and feline electrocardoigraphy (2nd ed.). Philadelphia: W.B. Saunders Co 10. Barr, C.S., Nass, A., Freeman, M., Lang, C.C., Struthers, A.D. (1994). QT dispersion and sudden unexpected death in chronic heart failure. Lancet. 343(8893): 327-329. https://doi.org/10.1016/S0140-6736(94)91164-9 PMid:7905146
11. Viskin, S. (2009). The QT interval: too long, too short or just right. Heart Rhythm. 6(5): 711-715. https://doi.org/10.1016/j.hrthm.2009.02.044 PMid:19389656 
12. Gonul, R., Koenhemsi, L., Yildiz, K., Or, M.E. (2019). Determination of corrected QT interval in Kangal breed dogs. Pak Vet J. 39(1): 86-90. https://doi.org/10.29261/pakvetj/2018.115 
13. Oliveira, M.S., Muzzi, R.A.L., Muzzi, L.A.L., Cherem, M., Mantovani, M.M. (2014). QT interval in healthy dogs: which method of correcting the QT interval in dogs is appropriate for use in small animal clinics? Animal Morphophysiology. Pesq Vet Bras. 34(5): 469-472. https://doi.org/10.1590/S0100-736X2014000500014 
14. Phan, D.Q., Silka, M.J., Yueh-Tze, L., Lan, Y.T., Chang, R.K. (2015). Comparison of formulas for calculation of the corrected QT interval in infants and young children. J Pediatr. 166(4): 960-964. https://doi.org/10.1016/j.jpeds.2014.12.037 PMid:25648293 PMCid:PMC4380641
15. Cobos Gil, M.A. (2013). A new, simpler and better correction formula for the QT interval. J Am Coll Cardiol. 61(10): E294. https://doi.org/10.1016/S0735-1097(13)60294-6 
16. Molnara, J., Weiss, J., Zhang, F., Rosenthal, J.E. (1996). Evaluation of five QT correction formulas using a software-assisted method of continuous QT measurement from 24-hour Holter recordings. Am J Card. 78(8): 920-926. https://doi.org/10.1016/S0002-9149(96)00468-7 PMid:8888666
17. Bazett, H.C. (1920). An analysis of the time-relations of electrocardiograms. Heart 7, 353-370. 
18. Buchanan, J.W. (2000). Vertebral scale system to measure heart size in radiographs. Vet Clin North Am Small Anim Pract. 30(2): 379-393. https://doi.org/10.1016/S0195-5616(00)50027-8
19. Keene, B.W., Atkins, C.E., Bonagura, J.D., Fox, P.R., Häggström, J., Fuentes, V.L., Oyama, M.A., et al. (2019). ACVIM consensus guidelines for the diagnosis and treatment of myxomatous mitral valve disease in dogs. J Vet Intern Med. 33(3): 1127-1140. https://doi.org/10.1111/jvim.15488 PMid:30974015 PMCid:PMC6524084
20. Häggström, J., Hansson, K., Kvart, C., Swenson, L. (1992). Chronic valvular disease in the cavalier King Charles spaniel in Sweden. Vet Rec. 131(24): 549-553.
21. Birkegard, A.C., Reimann, M.J., Martinussen, T., Häggström, J., Pedersen, H.D., Olsen, L.H. (2016). Breeding restrictions decrease the prevalence of myxomatous mitral valve disease in Cavalier King Charles Spaniels over an 8- to 10-year period. J Vet Intern Med. 30(1): 63-68. https://doi.org/10.1111/jvim.13663 PMid:26578464 PMCid:PMC4913653
22. Borgarelli, M., Haggström, J. (2010). Canine degenerative myxomatous mitral valve disase: natural history, clinical presentation and therapy. Vet Clin Small Anim Pract. 40(4): 651-663. https://doi.org/10.1016/j.cvsm.2010.03.008 PMid:20610017 
23. Cho, E.J., Han, K., Lee, S.P., Shin, D.W., Yu, S.J. (2020). Liver enzyme variability and risk of heart disease and mortality: a nationwide populationbased study. Liver Int. 40(6): 1292-1302. https://doi.org/10.1111/liv.14432 PMid:32153096
24. Nicholle, A.P., Chetboul, V., Allerheiligen, T., Pouchelon, J.L., Gouni, V., Tessier Vetzel, D., Lefebvre, H.P. (2007). Azotemia and glomerular filtration rate in dogs with chronic valvular disease. J Vet Intern Med. 21(5): 943-949. https://doi.org/10.1111/j.1939-1676.2007.tb03047.x PMid:17939547
25. Isbister, G.K., Page, C.B. (2013). Drug induced QT prolongation: the measurement and assessment of the QT interval in clinical practice. Br J Clin Pharmacol. 76(1): 48-57. https://doi.org/10.1111/bcp.12040 PMid:23167578 PMCid:PMC3703227
26. Gralinski, M.R. (2003). The dog’s role in the preclinical assessment of QT interval prolongation. Toxicol Pathol. 31: 11-16. https://doi.org/10.1080/01926230390174887 PMid:12597426
27. Ether, N.D., Jantre, S.R., Sharma, D.B., Leishman, D.J., Bailie, M.B., Lauver, D.A. (2022). Improving corrected QT; Why individual correction is not enough. J Pharmacol Toxicol Methods. 113, 107126. https://doi.org/10.1016/j.vascn.2021.107126 PMid:34655760 
28. Dekker, J.M., Crow, R.S., Hannan, P.J., Schouten, E.G., Folsom, A.R. (2004). Heart rate-corrected QT interval prolongation predicts risk of coronary heart disease in black and white middle-aged men and women: the ARIC study. J Am Coll Cardiol. 43(4): 565-571. https://doi.org/10.1016/j.jacc.2003.09.040 PMid:14975464
29. Patel, S., Bhatt, L., Patel, R., Shah, C., Patel, V., Patel, J., Sundar, R., et al. (2017). Identifiction of appropriate QTc Formula in beagle dogs for nonclinical safety assesment. Regul Toxicol Pharmacol. 89, 118-124. https://doi.org/10.1016/j.yrtph.2017.07.026 PMid:28751260
30. Koyama, H., Yoshii, H., Yabu, H., Kumada, H., Fukuda, K., Mitani, S., Rousselot, J.F., et al. (2004). Evaluation of QT interval prolongation in dogs with heart failure. J Vet Med Sci. 66(9): 1107-1111. https://doi.org/10.1292/jvms.66.1107 PMid:15472475
31. Batey, A.J., Doe, C.P.A. (2002). A method for QT correction based on beat-to-beat analysis of the QT/RR interval relationship in conscious telemetred beagle dogs. J Pharmacol Toxicol Methods. 48(1): 11-19. https://doi.org/10.1016/S1056-8719(03)00009-1 PMid:12750037 
32. Chiang, A.Y., Holdsworth, D.L., Leishman, D.J. (2006). A one-step approach to the analysis of the QT interval in conscious telemetrized dogs. J Pharmacol Toxicol Methods. 54(2): 183-188. https://doi.org/10.1016/j.vascn.2006.02.004 PMid:16567113
33. Andršová, I., Hnatkova, K., Šišáková, M., Toman, O., Smetana, P., Huster, K.M., Barthel, P., et al. (2021). Infuence of heart rate correction formulas on QTc interval stability. Sci Rep. 11(1): 14269. https://doi.org/10.1038/s41598-021-93774-9 PMid:34253795 PMCid:PMC8275798
34. Kmecova, J., Klimas, J. (2010). Heart rate correction of the QT duration in rats. Eur J Pharmacol. 641(2-3): 187-192. https://doi.org/10.1016/j.ejphar.2010.05.038 PMid:20553920


Copyright

© 2023 Sağoğlu H. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Conflict of Interest Statement

The authors declared that they have no potential lict of interest with respect to the authorship and/or publication of this article.

Citation Information

Macedonian Veterinary Review. Volume 46, Issue 1, Pages 61-67, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: 10.2478/macvetrev-2023-0014, 2023