Original Scientific Article
Investigation of potential serum biomarkers for the diagnosis of chronic back pain in horses
Abubakar Musa Mayaki,
Intan-Shameha Abdul Razak*,
Noraniza Mohd Adzahan,
Mazlina Mazlan,
Rasedee Abdullah

Mac Vet Rev 2023; 46 (1): 79 - 87


Received: 16 February 2022

Received in revised form: 10 February 2023

Accepted: 24 February 2023

Available Online First: 02 March 2023

Published on: 15 March 2023

Correspondence: Intan-Shameha Abdul Razak, intanshameha@upm.edu.my


Back pain is one of the most common triggers of performance failure in athletic and riding horses. Diagnosis of equine back pain has been very challenging for equine practitioners, particularly in chronic cases. Therefore, the identification of blood biomarkers would facilitate the clinical differentiation of chronic back pain. This study aimed to investigate serum biomarkers of glial cell activation, axonal damage, and inflammation for the diagnosis of equine chronic back pain. Serum samples from forty horses comprising chronic back pain (CBP), back pain concurrent with lameness (BPL), lameness (LN), and healthy control (HC) (n=10 per group) were screened for ionized calcium-binding adaptor molecule 1 (Iba-1), glial fibrillary acidic protein (GFAP), phosphorylated neurofilament-H (pNF-H) by ELISA, and proinflammatory cytokines (IL-1β, IL-6, and TNF-α) by multiplex assay. Serum concentrations of GFAP (3.81±1.72 ng/mL) and pNF-H (0.76±0.18 ng/mL) were significantly (p<0.05) higher in horses with CBP when compared with other groups. Iba-1 was not significantly higher in CBP horses. There was no significant difference between the pro-inflammatory cytokines among the groups. The levels of IL-1β, IL-6, and TNF-α were also increased in the CBP than the HC control horses but lower in relation to BPL and LN horses. In addition, serum Iba-1, GFAP, and pNF-H showed a high discriminatory capacity for horses with CBP with high sensitivity (50-100%) and specificity (70-100%). This study provides evidence that serum levels of the GFAP and pNF-H may be useful in the clinical differentiation of horses with chronic back pain.

Keywords: chronic back pain, biomarkers, serum, clinical diagnosis, horses


1.Riccio, B., Fraschetto, C., Villanueva, J., Cantatore, F., Bertuglia, A. (2018). Two multicenter surveys on equine back-pain 10 years a part. Front Vet Sci. 5, 195. https://doi.org/10.3389/fvets.2018.00195 PMid:30191152 PMCid:PMC6115529
2. Stubbs, N.C., Riggs, C.M., Hodges, P.W., Jeffcott, L.B., Hodgson, D.R., Clayton, H.M., Mc Gowan, C.M. (2010). Osseous spinal pathology and epaxial muscle ultrasonography in Thoroughbred racehorses. Equine Vet J. 42(Suppl. 38): 654-661. https://doi.org/10.1111/j.2042-3306.2010.00258.x PMid:21059076
3. Viñuela-Fernández, I., Jones, E., Welsh, E.M., Fleetwood-Walker, S.M. (2007). Pain mechanisms and their implication for the management of pain in farm and companion animals. Vet J. 174(2): 227-239. https://doi.org/10.1016/j.tvjl.2007.02.002 PMid:17553712
4. Ji, R.R., Chamessian, A., Zhang, Y.Q. (2016). Pain regulation by non-neuronal cells and inflammation. Science 354(6312): 572-577. https://doi.org/10.1126/science.aaf8924 PMid:27811267 PMCid:PMC5488328
5. Nimmerjahn, A., Kirchhoff, F., Helmchen, F. (2005). Resting microglial cells are highly dynamic surveillants of brain parenchyma in vivo. Science 308(5726): 1314-1318. https://doi.org/10.1126/science.1110647 PMid:15831717
6. Gwak, Y.S., Hulsebosch, C.E., Leem, J.W. (2017). Neuronal-glial interactions maintain chronic neuropathic pain after spinal cord injury. Neural Plast. 2480689.  https://doi.org/10.1155/2017/2480689  PMid:28951789 PMCid:PMC5603132
7. Zhou, L.J., Peng, J., Xu, Y.N., Zeng, W.J., Zhang, J., Wei, X., Mai, C.L., et al. (2019). Microglia are indispensable for synaptic plasticity in the spinal dorsal horn and chronic pain. Cell Rep. 27(13): 3844-3859. https://doi.org/10.1016/j.celrep.2019.05.087 PMid:31242418 PMCid:PMC7060767
8. Mayaki, A.M., Intan Shameha, A.R., Noraniza, M.A., Mazlan, M., Abdullah, R. (2020). Myelopathy and reactive microgliosis and astrogliosis in equine back pain. J Equine Vet Sci. 90, 103019. https://doi.org/10.1016/j.jevs.2020.103019 PMid:32534783
9. Lambert, D.M., Kumar, U., Häfeli, U.O. (2018). Up-regulation of Iba-1 and GFAP in the acidic saline model of chronic widespread musculoskeletal pain: a pilot study examining the relationship between gliosis and hyperalgesia. J Neurosci Neuropharm. 4(2): 1-9.
10. Shaw, G., Yang, C., Ellis, R., Anderson, K., Mickle, J.P., Scheff, S., Pike, B., et al. (2005). Hyperphosphorylated neurofilament NF-H is a serum biomarker of axonal injury. Biochem Biophys Res Commun. 336(4): 1268-1277. https://doi.org/10.1016/j.bbrc.2005.08.252 PMid:16176808
11. Fukui, M., Tanaka, M., Toda, H., Asano, M., Yamazaki, M., Hasegawa, G., Nakamura, N. (2012). The serum concentration of allograft inflammatory factor-1 is correlated with metabolic parameters in healthy subjects. Metabolism 61(7): 1021-1025. https://doi.org/10.1016/j.metabol.2011.12.001 PMid:22225958
12. Intan-Shameha, A.R., Divers, T.J., Morrow, J.K., Graves, A., Olsen, E., Johnson, A.L., Mohammed, H.O. (2017). Phosphorylated neurofilament H (pNF-H) as a potential diagnostic marker for neurological disorders in horses. Res Vet Sci. 114, 401-405. https://doi.org/10.1016/j.rvsc.2017.07.020 PMid:28750210
13. Olby, N.J., Lim, J.H., Wagner, N., Zidan, N., Early, P.J., Mariani, C.L., Muñana, K.R., Laber, E. (2019). Time course and prognostic value of serum GFAP, pNFH, and S100β concentrations in dogs with complete spinal cord injury because of intervertebral disc extrusion. J Vet Intern Med. 33(2): 726-734. https://doi.org/10.1111/jvim.15439 PMid:30758078 PMCid:PMC6430936
14. Anon. (1999). Guide to veterinary services for horses shows (7th ed.). American Association of Equine Practitioners, Lexington
15. Morales Gómez, A.M., Zhu, S., Palmer, S., Olsen, E., Ness, S.L., Divers, T.J., Bischoff, K., Mohammed, H.O. (2019). Analysis of neurofilament concentration in healthy adult horses and utility in the diagnosis of equine protozoal myeloencephalitis and equine motor neuron disease. Res Vet Sci. 125, 1-6. https://doi.org/10.1016/j.rvsc.2019.04.018 PMid:31103855 
16. Takala, R.S.K., Posti, J.P., Runtti, H., Newcombe, V.F., Outtrim, J., Katila, A.J., et al. (2016). Glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 as outcome predictors in traumatic brain injury. World Neurosurg. 87, 8-20. https://doi.org/10.1016/j.wneu.2015.10.066 PMid:26547005
17. Long, K., McGowan, C.M., Hyytiäinen, H.K. (2020). Effect of caudal traction on mechanical nociceptive thresholds of epaxial and pelvic musculature on a group of horses with signs of back pain. J Equine Vet Sci. 93, 103197. https://doi.org/10.1016/j.jevs.2020.103197 PMid:32972678 
18. Grint, N.J., Beths, T., Yvorchuk, K., Taylor, P.M., Dixon, M., Whay, H.R., Murrell, J.C. (2014). The influence of various confounding factors on mechanical nociceptive thresholds in the donkey. Vet Anaesth Analg. 41(4): 421-429. https://doi.org/10.1111/vaa.12132 PMid:24576142
19. Pongratz, U., Licka, T. (2017). Algometry to measure pain threshold in the horse’s back - An in vivo and in vitro study. BMC Vet Res. 13, 80. https://doi.org/10.1186/s12917-017-1002-y PMid:28356118 PMCid:PMC5372265
20. Alexander, G.M., Perreault, M.J., Reichenberger, E.R., Schwartzman, R.J. (2007). Changes in immune and glial markers in the CSF of patients with Complex Regional Pain Syndrome. Brain Behav Immun. 21(5): 668-676. https://doi.org/10.1016/j.bbi.2006.10.009 PMid:17129705
21. Chiang, C.Y., Sessle, B.J., Dostrovsky, J.O. (2012). Role of astrocytes in pain. Neurochem Res. 37(11): 2419-2431. https://doi.org/10.1007/s11064-012-0801-6 PMid:22638776
22. Mika, J., Zychowska, M., Popiolek-Barczyk, K., Rojewska, E., Przewlocka, B., (2013). Importance of glial activation in neuropathic pain. Eur J Pharmacol. 716(1-3): 106-119. https://doi.org/10.1016/j.ejphar.2013.01.072 PMid:23500198
23. Wu, L., Ai, M.L., Feng, Q., Deng, S., Liu, Z.Y., Zhang, L.N., Ai, Y.H. (2019). Serum glial fibrillary acidic protein and ubiquitin C-terminal hydrolase-L1 for diagnosis of sepsis-associated encephalopathy and outcome prognostication. J Crit Care. 52,   172-179.  https://doi.org/10.1016/j.jcrc.2019.04.018  PMid:31078998
24. Miyamoto, K., Ishikura, K.I., Kume, K., Ohsawa, M. (2019). Astrocyte-neuron lactate shuttle sensitizes nociceptive transmission in the spinal cord. Glia 67(1): 27- 36. https://doi.org/10.1002/glia.23474 PMid:30430652
25. Sato, Y., Shimamura, S., Mashita, T., Kobayashi, S., Okamura, Y., Katayama, M., Kamishina H, et al. (2013). Serum glial fibrillary acidic protein as a diagnostic biomarker in dogs with progressive myelomalacia. J Vet Med Sci. 75, 949-953. https://doi.org/10.1292/jvms.12-0483 PMid:23470323 
26. Grace, P.M., Hutchinson, M.R., Maier, S.F., Watkins, L.R. (2014). Pathological pain and the neuroimmune interface. Nat Rev Immunol. 14(4): 217-231. https://doi.org/10.1038/nri3621 PMid:24577438 PMCid:PMC5525062
27. Constantinescu, R., Krýsl, D., Bergquist, F., et al. (2016). Cerebrospinal fluid markers of neuronal and glial cell damage to monitor disease activity and predict long-term outcome in patients with autoimmune encephalitis. Eur J Neurol. 23(4): 796-806. https://doi.org/10.1111/ene.12942 PMid:26822123
28. Ringger, N.C., Giguère, S., Morresey, P.R., Yang, C., Shaw, G. (2011). Biomarkers of brain injury in foals with hypoxic-ischemic encephalopathy. J Vet Intern Med. 25(1): 132-137. https://doi.org/10.1111/j.1939-1676.2010.0645.x PMid:21143301
29. Boisson, M., Borderie, D., Henrotin, Y., Teboul-Coré, S., Lefèvre-Colau, M.M., Rannou, F., Nguyen, C. (2019). Serum biomarkers in people with chronic low back pain and Modic 1 changes: a case-control study. Sci Rep. 9, 10005. https://doi.org/10.1038/s41598-019-46508-x PMid:31292506 PMCid:PMC6620434
30. Kraychete, D.C., Sakata, R.K., Issy, A.M., Bacellar, O., Santos-Jesus, R., Carvalho, E.M. (2010). Serum cytokine levels in patients with chronic low back pain due to herniated disc : analytical crosssectional study. Sao Paulo Med J. 128(5): 259-262. https://doi.org/10.1590/S1516-31802010000500003 PMid:21181064
31. Choi, S.S., Lee, H.J., Lim, I., Satoh, J., Kim, S.U. (2014). Human astrocytes: secretome profiles of cytokines and chemokines. PLoS One 9(4): e92325. https://doi.org/10.1371/journal.pone.0092325 PMid:24691121 PMCid:PMC3972155
32. Klyne, D.M., Barbe, M.F., Hodges, P.W. (2018). Systemic inflammatory profiles and their relationships with demographic, behavioral and clinical features in acute low back pain. Brain Behav Immun. 60, 84-92. https://doi.org/10.1016/j.bbi.2016.10.003 PMid:27720935
33. Fraser, D.D., Close, T.E., Rose, K.L., Ward, R., Mehl, M., Farrell, C., Lacroix, J., et al. (2011). Severe traumatic brain injury in children elevates glial fibrillary acidic protein in cerebrospinal fluid and serum. Pediatr Crit Care Med. 12(3): 319-324. https://doi.org/10.1097/PCC.0b013e3181e8b32d PMid:20625342
34. Okonkwo, D.O., Yue, J.K., Puccio, A.M., Panczykowski, D.M., Inoue, T., McMahon, P.J., Sorani, M.D., et al. (2013). GFAP-BDP as an acute diagnostic marker in traumatic brain injury: Results from the prospective transforming research and clinical knowledge in traumatic brain injury study. J Neurotrauma. 30(17): 1490-1497. https://doi.org/10.1089/neu.2013.2883 PMid:23489259 PMCid:PMC3751263


© 2023 Mayaki A.M. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Conflict of Interest Statement

The authors declared that they have no potential lict of interest with respect to the authorship and/or publication of this article.

Citation Information

Macedonian Veterinary Review. Volume 46, Issue 1, Pages 79-87, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: 10.2478/macvetrev-2023-0016, 2023