Original Scientific Article
β-Lactamase genes (blaCTX-M, blaSHV, blaTEM, blaOXA1 AND blaOXA2) and phylogenetic groups in ESBL producing commensal Escherichia coli isolated from faecal samples from dairy farm in the Municipality of Debar
Maksud Kerluku,
Dean Jankuloski,
Marija Ratkova Manovska,
Mirko Prodanov,
Biljana Stojanovska Dimzoska,
Aleksandar Dodovski,
Katerina Blagoevska*

Mac Vet Rev 2023; 46 (1): 89 - 97


Received: 18 November 2022

Received in revised form: 25 January 2023

Accepted: 30 January 2023

Available Online First: 03 March 2023

Published on: 15 March 2023

Correspondence: Katerina Blagoevska, katerinab@fvm.ukim.edu.mk


β-lactamases are a diverse class of enzymes produced by bacteria that present a major cause for resistance to β-lactams. In this study we analysed 159 fecal samples from dairy cows, for the presence of presumptive ESBL, AmpC, and carbapenemase-producing E. coli. Phylotyping was done using Clermont phylo-typing method, targeting arpA, ChuA, and YjaA genes, along with the DNA fragment TspE4.C2. Convetional PCR method was used to confirm the presence of bla genes among 39 phenotypically confirmed ESBL producing E. coli. The results showed presence of CTX-M, SHV, TEM and OXA1 bla genes in 28 (71.79%), 1 (2.56%), 29 (74.35%), 2 (5.12%) of isolates, respectively Twenty (51.28%) isolates showed presence of both blaCTX-M and TEM genes. The strain that carried the blaSHV gene was found to carry blaTEM gene as well, while one of the strains that carried blaOXA1 gene was also carrying blaCTX-M and TEM gene. The ration between isolates and phylo-groups was as follows: 9 (23.07%) strains were assigned to phyllo-group D; 14 (35.89%) to phyllo-group B; 16 (41.02%) to phyllo-group A. Out of the 39 strains where bla genes were identified, 29 (74.35%) were categorized as multi drug resistant.

Keywords: ESBL, E. coli, bla genes, phylogenetic groups, dairy cow


1.Hosain, M.Z., Kabir, S.M.L., Kamal, M.M. (2021). Antimicrobial uses for livestock production in developing countries. Vet World. 14(1): 210-221. https://doi.org/10.14202/vetworld.2021.210-221 PMid:33642806 PMCid:PMC7896880
2. Serwecińska, L. (2020). Antimicrobials and antibiotic-resistant bacteria: a risk to the environment and to public health. Water 12(12): 3313. https://doi.org/10.3390/w12123313 
3. Larsson, D.G.J., Flach, C.F. (2022). Antibiotic resistance in the environment. Nat Rev Microbiol. 20, 257-269. https://doi.org/10.1038/s41579-021-00649-x PMid:34737424 PMCid:PMC8567979 
4. Velazquez-Meza, M.E., Galarde-López, M., Carrillo-Quiróz, B., Alpuche-Aranda, C.M. (2022). Antimicrobial resistance: one health approach. Vet World. 15(3): 743-749. https://doi.org/10.14202/vetworld.2022.743-749 PMid:35497962 PMCid:PMC9047147
5. Massé, J., Lardé, H., Fairbrother, J.M., Roy, J-P., Francoz, D., Dufour, S., Archambault, M. (2021). Prevalence of antimicrobial resistance and characteristics of Escherichia coli isolates from faecal and manure pit samples on dairy farms in the Province of Québec, Canada. Front Vet Sci. 8, 654125. https://doi.org/10.3389/fvets.2021.654125 PMid:34095273 PMCid:PMC8175654
6. Black, Z., Balta, I., Black, L., Naughton, P.J., Dooley, J.S.G., Corcionivoschi, N. (2021). The fate of foodborne pathogens in manure treated soil. Front Microbiol. 12, 781357. https://doi.org/10.3389/fmicb.2021.781357 PMid:34956145 PMCid:PMC8702830
7. Madec, J.Y., Haenni, M., Nordmann, P., Poirel, L. (2017). Extended-spectrum β-lactamase/AmpC- and carbapenemase-producing Enterobacteriaceae in animals: a threat for humans? Clin Microbiol Infect. 23(11): 826-833. https://doi.org/10.1016/j.cmi.2017.01.013 PMid:28143782
8. Castanheira, M., Simner, P.J., Bradford, P.A. (2021). Extended-spectrum β-lactamases: an update on their characteristics, epidemiology and detection. JAC-Antimicrob Resist. 3(3): dlab092. https://doi.org/10.1093/jacamr/dlab092 PMid:34286272 PMCid:PMC8284625
9. Alipour, M., Jafari, A. (2019). Evaluation of the prevalence of blaSHV, blaTEM, and blaCTX Genes in Escherichia coli isolated from urinary tract infections. Avicenna J Clin Microbiol Infect. 6(3): 83-87. https://doi.org/10.34172/ajcmi.2019.15 
10. Carlos, C., Pires, M.M., Stoppe, N.C., Hachich, E.M., Sato, M.I., Gomes, T.A., Amaral, L.A., Ottoboni, L.M. (2010). Escherichia coli phylogenetic group determination and its application in the identification of the major animal source of faecal contamination. BMC Microbiol. 10, 161. https://doi.org/10.1186/1471-2180-10-161 PMid:20515490 PMCid:PMC2889953
11. Ramos, S., Silva, V., Dapkevicius, M.L.E., Caniça, M., Tejedor-Junco, M.T., Igrejas, G., Poeta, P. (2020). Escherichia coli as commensal and pathogenic bacteria among food-producing animals: health implications of extended spectrum β-lactamase (ESBL) production. Animals (Basel) 10(12): 2239. https://doi.org/10.3390/ani10122239 PMid:33260303 PMCid:PMC7761174
12. EURL-AMR DTU [Internet]. Isolation of ESBL-, AmpC- and carbapenemase-producing E. coli from caecal samples. Laboratory protocol. December 2019. Version 7. https://www.eurl- ar.eu/CustomerData/ Files/Folder s/21-protocols/530_esbl-ampccpeprotocol- version-caecal-v7-09-12-19.pdf 
13. Commission Implementing Decision of 12 November 2013 on the Monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria 2013/652/EU. (2013). OJEU 14.11.2013
14. Dierikx, C.M., van Duijkeren, E., Schoormans, A.H.W., van Essen-Zandbergen, A., Veldman, K., Kant, A., Mevius, D.J. (2012). Occurrence and characteristics of extended-spectrum-β-lactamase- and AmpC-producing clinical isolates derived from companion animals and horses. J Antimicrob Chemother. 67(6): 1368-1374. https://doi.org/10.1093/jac/dks049 PMid:22382469
15. Clermont, O., Christenson, J.K., Denamur, E., Gordon, D.M. (2013). The Clermont Escherichia coli phylo‐typing method revisited: improvement of specificity and detection of new phylo‐groups. Environ Microbiol Rep. 5(1): 58-65. https://doi.org/10.1111/1758-2229.12019 PMid:23757131
16. Athanasakopoulou, Z., Reinicke, M., Diezel, C., Sofia, M., Chatzopoulos, D.C., Braun, S.D., Reissig, A., et al. (2021). Antimicrobial resistance genes in ESBL-Producing Escherichia coli isolates from
animals in Greece. Antibiotics. 10(4): 389. https://doi.org/10.3390/antibiotics10040389 PMid:33916633 PMCid:PMC8067336
17. Gonçalves, A., Torres, C., Silva, N., Carneiro, C., Radhouani, H., Coelho, C., Araújo, C., et al. (2010). Genetic characterization of extended-spectrum beta-lactamases in Escherichia coli isolates of pigs from a Portuguese intensive swine farm. Foodborne Pathog Dis. 7(12): 1569-1573. https://doi.org/10.1089/fpd.2010.0598 PMid:20704503
18. Islam, M.S., Sobur, M.A., Rahman, S. et al. (2022). Detection of blaTEM, blaCTX-M, blaCMY, and blaSHV genes among extended-spectrum betalactamase- producing Escherichia coli isolated from migratory birds travelling to Bangladesh. Microb Ecol. 83(4): 942-950. https://doi.org/10.1007/s00248-021-01803-x PMid:34312710 PMCid:PMC8313370
19. Zhang, Y.L., Huang, F.Y., Gan, L.L., Yu, X., Cai, D.J., Fang, J., Zhong, Z.J., et al. (2021). High prevalence of blaCTX-M and blaSHV among ESBL producing E. coli isolates from beef cattle in China’s Sichuan-Chongqing circle. Sci Rep. 11, 13725. https://doi.org/10.1038/s41598-021-93201-z PMid:34215807 PMCid:PMC8253751
20. Braun, S.D., Ahmed, M.F.E., El-Adawy, H., Hotzel, H., Engelmann, I., Weiß, D., Monecke, S., Ehricht, R. (2016). Surveillance of extended-spectrum betalactamase-producing Escherichia coli in dairy cattle farms in the Nile delta, Egypt. Front. Microbiol. 7, 1020. https://doi.org/10.3389/fmicb.2016.01020 PMid:27458435 PMCid:PMC4931819
21. Olowe, O. A., Adewumi, O., Odewale, G., Ojurongbe, O., Adefioye, O.J. (2015). Phenotypic and molecular characterisation of extended-spectrum betalactamase producing Escherichia coli obtained from animal fecal samples in Ado Ekiti, Nigeria. J Environ Public Health. 2015, 497980. https://doi.org/10.1155/2015/497980 PMid:26417371 PMCid:PMC4568380
22. Pokhrel, R.H., Thapa, B., Kafle, R. (2014). Co-existence of beta-lactamases in clinical isolates of Escherichia coli from Kathmandu, Nepal. BMC Res Notes. 7, 694. https://doi.org/10.1186/1756-0500-7-694 PMid:25287013 PMCid:PMC4197279 
23. Mirkalantari, S., Masjedian, F., Irajian, G., Siddig, E., Fattahi, A. (2020). Determination of the frequency of β-lactamase genes (bla SHV, bla TEM, bla CTX-M) and phylogenetic groups among ESBL-producing uropathogenic Escherichia coli isolated from outpatients. JLM 44(1): 27-33. https://doi.org/10.1515/labmed-2018-0136 
24. Popova, G., Jankuloski, D., Felix, B., Boskovska, K., Stojanovska-Dimzovska, B., Tasic, V., Blagoevska, K. (2018). Pulsed-field gel electrophoresis used for typing of extended-spectrum-β-lactamases-producing Escherichia coli Isolated from infant ҆s respiratory and digestive system. Mac Vet Rev. 41(2): 133-141. https://doi.org/10.2478/macvetrev-2018-0016 
25. Blaak, H., van Hoek, A., Hamidjaja, R.A., van der Plaats, R., Kerkhof-de, H.L. (2015). Distribution, numbers, and diversity of ESBL-producing E. coli in the poultry farm environment. PLoS ONE 10(8): e0135402. https://doi.org/10.1371/journal.pone.0135402 PMid:26270644 PMCid:PMC4536194
26. Kamaruzzaman, E.A., Abdul Aziz, S., Bitrus, A.A., Zakaria, Z., Hassan, L. (2020). Occurrence and characteristics of extended-spectrum β-lactamase-producing Escherichia coli from dairy cattle, milk, and farm environments in peninsular Malaysia. Pathogens 9(12): 1007. https://doi.org/10.3390/pathogens9121007 PMid:33266299 PMCid:PMC7760176
27. Wittum, T.E., Mollenkopf, D.F., Daniels, J.B., Parkinson, A.E., Mathews, J.L., Fry, P.R., Abley, M.J., Gebreyes, W.A. (2010). CTX-M-type extendedspectrum β-lactamases present in Escherichia coli from the faeces of cattle in Ohio, United States. Foodborne Pathog Dis. 7(12): 1575-1579. https://doi.org/10.1089/fpd.2010.0615 PMid:20707724
28. Shnaiderman-Torban, A., Navon-Venezia, S., Paitan, Y. (2020). Extended spectrum β lactamase-producing Enterobacteriaceae shedding by racehorses in Ontario, Canada. BMC Vet Res. 16, 479. https://doi.org/10.1186/s12917-020-02701-z PMid:33298039 PMCid:PMC7726890
29. Kim, D.H., Chung, Y.S., Park, Y.K., Yang, S.J., Lim, S.K., Park, Y.H., Park, K.T. (2016). Antimicrobial resistance and virulence profiles of Enterococcus spp. isolated from horses in Korea. Comp Immunol Microbiol Infect Dis. 48, 6-13. https://doi.org/10.1016/j.cimid.2016.07.001 PMid:27638114
30. Dierikx, C., van Essen-Zandbergen, A., Veldman, K., Smith, H., Mevius, D. (2010). Increased detection of extended spectrum beta-lactamase producing Salmonella enterica and Escherichia coli isolates from poultry. Vet Microbiol. 145(3-4): 273-278. https://doi.org/10.1016/j.vetmic.2010.03.019 PMid:20395076
31. Wang, J., Ma, Z.B., Zeng, Z.L., Yang, X.W., Huang, Y., Liu, J.H. (2017). The role of wildlife (wild birds) in the global transmission of antimicrobial resistance genes. Zool Res. 38(2): 55-80. https://doi.org/10.24272/j.issn.2095-8137.2017.024 PMid:28825455 PMCid:PMC5571481 
32. Gundran, R.S., Cardenio, P.A., Villanueva, M.A. et al. (2019). Prevalence and distribution of blaCTX-M, blaSHV, blaTEM genes in extended- spectrum β- lactamase- producing E. coli isolates from broiler farms in the Philippines. BMC Vet Res. 15, 227. https://doi.org/10.1186/s12917-019-1975-9 PMid:31277658 PMCid:PMC6612079
33. Houser, B.A., Donaldson, S.C., Padte, R., Sawant, A.A., DebRoy, C., Jayarao, B.M. (2008). Assessment of phenotypic and genotypic diversity of Escherichia coli shed by healthy lactating dairy cattle. Foodborne Pathog Dis. 5(1): 41-51. https://doi.org/10.1089/fpd.2007.0036 PMid:18260814
34. Duriez, P., Clermont, O., Bonacorsi, S., Bingen, E., Chaventré, A., Elion, J., Picard, B., Denamur, E. (2001). Commensal Escherichia coli isolates are phylogenetically distributed among geographically distinct human populations. Microbiology (Reading). 147(Pt 6): 1671-1676. https://doi.org/10.1099/00221287-147-6-1671 PMid:11390698
35. Johnson, J.R., Stell, A.L. (2000). Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis. 181(1): 261-272. https://doi.org/10.1086/315217 PMid:10608775
36. Carvalho, A.C., Barbosa, A.V., Arais, L.R., Ribeiro, P.F., Carneiro, V.C., Cerqueira, A. M. (2016). Resistance patterns, ESBL genes, and genetic relatedness of Escherichia coli from dogs and owners. Braz J Microbiol. 47(1): 150-158. https://doi.org/10.1016/j.bjm.2015.11.005 PMid:26887238 PMCid:PMC4822764
37. Reich, F., Atanassova, V., Klein, G. (2013). Extended-spectrum β-lactamase- and AmpC-producing enterobacteria in healthy broiler chickens, Germany. Emerg Infect Dis. 19(8): 1253-1259. https://doi.org/10.3201/eid1908.120879 PMid:23876576 PMCid:PMC3739521


© 2023 Kerluku M. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Conflict of Interest Statement

The authors declared that they have no potential lict of interest with respect to the authorship and/or publication of this article.

Citation Information

Macedonian Veterinary Review. Volume 46, Issue 1, Pages 89-97, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: 10.2478/macvetrev-2023-0017, 2023