Original Scientific Article
The effects of tacrolimus and erythropoietin on histopathologic and functional recovery of sciatic nerve crush in mice
Kimia Mansouri ,
Hamidreza Fattahian * ,
Alireza Jahandideh ,
Hesameddin Akbarein

Mac Vet Rev 2023; 46 (2): i - xvii


Received: 14 January 2023

Received in revised form: 12 April 2023

Accepted: 10 May 2023

Available Online First: 30 June 2023

Published on: 15 October 2023

Correspondence: Hamidreza Fattahian, hamidrezafattahian@yahoo.com


Currently, despite decades of trial and error, peripheral nerve injury is an impenetrable clinical dilemma. Any proven effective pharmacologic agent leads to a decisive leap forward to the clinical management of neuropathies. This study investigated the effects of tacrolimus and erythropoietin on sciatic nerve regeneration. Twenty-three mice were randomly assigned to tacrolimus, erythropoietin, tacrolimus + erythropoietin, control, and sham groups following sciatic nerve crush via hemostatic forceps. Medications were administered for 28 consecutive days. The sham group received neither crush injury nor medication. Histopathologic, immunohistochemical, and walking track analyses were performed. In the erythropoietin group, axonal swelling was significantly reduced and the average axonal number significantly recovered up to 75% of normal nerve compared to other groups. Marked immunoreactivity to GFAP and S-100 protein was present in the tacrolimus group. Nevertheless, at least moderate GFAP and S-100 expressions were observed in all of the groups. Functional recovery was superior in the tacrolimus group after 14 days, although a complete return to near-normal function was achieved in all groups after 28 days, regardless of the medication used. Our data supported the neurotrophic effects of tacrolimus and erythropoietin; however, not enough data was gathered to confirm their synergistic effects. Whether these results are extensible to clinical scenarios requires further detailed investigations.

Keywords: crush injury, erythropoietin, regeneration, sciatic nerve, tacrolimus


1.  Jones, S., Eisenberg, H.M., Jia, X. (2016). Advances and future applications of augmented peripheral nerve regeneration. Int J Mol Sci. 17(9): 1494. https://doi.org/10.3390/ijms17091494 PMid:27618010 PMCid:PMC5037771
2. Panagopoulos, G.N., Megaloikonomos, P.D., Mavrogenis, A.F. (2017). The present and future for peripheral nerve regeneration. Orthopedics 40(1): e141-e156.  https://doi.org/10.3928/01477447-20161019-01 
3. Labroo, P., Ho, S., Sant, H., Shea, J., Gale, B.K., Agarwal, J. (2016). Controlled delivery of FK506 to improve nerve regeneration. Shock 46(3S): 154-159. https://doi.org/10.1097/SHK.0000000000000628  PMid:27058050
4. Caillaud, M., Chantemargue, B., Richard, L., Vignaud, L., Favreau, F., Faye, P.A., Vignoles, P.A., et al. (2018). Local low dose curcumin treatmentimproves functional recovery and remyelination in a rat model of sciatic nerve crush through inhibition of oxidative stress. Neuropharmacology 139, 98-116. https://doi.org/10.1016/j.neuropharm.2018.07.001 PMid:30018000
5. Chen, M.M., Qin, J., Chen, S.J., Yao, L.M., Zhang, L.U., Yin, Z.Q., Liao, H. (2017). Quercetin promotes motor and sensory function recovery following sciatic nerve-crush injury in C57BL/6J mice. J Nutr Biochem. 46, 57-67. https://doi.org/10.1016/j.jnutbio.2017.04.006 PMid:28458138
6. Imran, A., Xiao, L., Ahmad, W., Anwar, H., Rasul, A., Imran, M., Aziz, N., et al. (2019). Foeniculum vulgare (Fennel) promotes functional recovery and ameliorates oxidative stress following a lesion to the sciatic nerve in mouse model. J Food Biochem. 43(9): e12983. https://doi.org/10.1111/jfbc.12983 
7. Elfar, J.C., Jacobson, J.A., Puzas, J.E., Rosier, R.N.,  Zuscik, M.J. (2008). Erythropoietin accelerates functional recovery after peripheral nerve injury. J Bone Joint Surg Am. 90(8): 1644-1653. https://doi.org/10.2106/JBJS.G.00557 PMid:18676893 PMCid:PMC4470043
8. Bhandari, P.S. (2019). Management of peripheral nerve injury. J Clin Orthop Trauma. 10(5): 862-866. https://doi.org/10.1016/j.jcot.2019.08.003 PMid:31528058 PMCid:PMC6739245
9. Mekaj, A.Y., Morina, A.A., Bytyqi, C.I., Mekaj, Y.H., Duci, S.B. (2014). Application of topical pharmacological agents at the site of peripheral nerve injury and methods used for evaluating the success of the regenerative process. J Orthop Surg Res. 9, 94. https://doi.org/10.1186/s13018-014-0094-3 PMid:25303779 PMCid:PMC4198735
10. Grinsell, D., Keating, C.P. (2014). Peripheral nerve reconstruction after injury: a review of clinical and experimental therapies. BioMed Res Int. 2014, 698256. https://doi.org/10.1155/2014/698256  PMid:25276813 PMCid:PMC4167952 
11. Davis, B., Hilgart, D., Erickson, S., Labroo, P., Burton, J., Sant, H., Shea, J., et al. (2019). Local FK506 delivery at the direct nerve repair site improves nerve regeneration. Muscle Nerve 60(5): 613-620. https://doi.org/10.1002/mus.26656  PMid:31397908
12. Wang, T., Ito, A., Aoyama, T., Nakahara, R., Nakahata, A., Ji, X., Zhang, J., et al. (2018). Functional evaluation outcomes correlate with crush injury model: A comparison between sciatic functional index and kinematic analysis. PLoS One 13(12): e0208985. https://doi.org/10.1371/journal.pone.0208985 PMid:30540822 PMCid:PMC6291147 
13. Feng, X., Yuan, W. (2015). Dexamethasone enhanced functional recovery after sciatic nerve crush injury in rats. BioMed Res Int. 2015: 627923. https://doi.org/10.1155/2015/627923  PMid:25839037 PMCid:PMC4369935
14. Somay, H., Emon, S.T., Uslu, S., Orakdogen, M., Meric, Z.C., Ince, U., Hakan, T. (2017). The histological effects of ozone therapy on sciatic nerve crush injury in rats. World Neurosurg. 105: 702-708. https://doi.org/10.1016/j.wneu.2017.05.161 PMid:28587982
15. Suslu, H., Altun, M., Erdivanli, B., Turan Suslu, H. (2013). Comparison of the effects of local and systemic dexamethasone on the rat traumatic sciatic nerve model. Turk Neurosurg. 23(5): 623-629.
16. Saffari, T.M., Bedar, M., Zuidam, J.M., Shin, A.Y., Baan, C.C., Hesselink, D.A., Hundepool, C.A. (2019). Exploring the neuroregenerative potential of tacrolimus. Expert Rev Clin Pharmacol. 12(11): 1047-1057. https://doi.org/10.1080/17512433.2019.1675507 PMid:31575290
17. Konofaos, P., Terzis, J.K. (2013). FK506 and nerve regeneration: past, present, and future. J Reconstr Microsurg. 29(3): 141-148. https://doi.org/10.1055/s-0032-1333314 PMid:23322540
18. Wang, M.S., Zeleny-Pooley, M., Gold, B.G. (1997). Comparative dose-dependence study of FK506 and cyclosporin A on the rate of axonal regeneration in the rat sciatic nerve. J Pharmacol Exp Ther. 282(2): 1084-1093.
19. Snyder, A.K., Fox, I.K., Nichols, C.M., Rickman, S.R., Hunter, D.A., Tung, T.H., Mackinnon, S.E. (2006). Neuroregenerative effects of preinjury FK- 506 administration. Plast Reconstr Surg. 118(2):360-367.  https://doi.org/10.1097/01.prs.0000227628.43867.5b PMid:16874203
20. Sosa, L., Reyes, O., Kuffler, D.P. (2005). Immunosuppressants: neuroprotection and promoting neurological recovery following peripheral nerve and spinal cord lesions. Exp Neurol. 195(1): 7 15. https://doi.org/10.1016/j.expneurol.2005.04.016 PMid:15935348
21. Geary, M.B., Li, H., Zingman, A., Ketz, J., Zuscik, M., de Mesy Bentley, K.L., Noble, M., Elfar, J.C. (2017). Erythropoietin accelerates functional recovery after moderate sciatic nerve crush injury. Muscle Nerve 56(1): 143-151. https://doi.org/10.1002/mus.25459 PMid:28168703 PMCid:PMC5420480 
22. Yin, Z.S., Zhang, H., Gao, W. (2010). Erythropoietin promotes functional recovery and enhances nerve regeneration after peripheral nerve injury in rats. AJNR Am J Neuroradiol. 31(3): 509-515. https://doi.org/10.3174/ajnr.A1820 PMid:20037135 PMCid:PMC7963987
23. Sundem, L., Chris Tseng, K.C., Li, H., Ketz, J., Noble, M., Elfar, J. (2016). Erythropoietin enhanced recovery after traumatic nerve injury: myelination and localized effects. J Hand Surg Am. 41(10): 999-1010. https://doi.org/10.1016/j.jhsa.2016.08.002 PMid:27593486 PMCid:PMC5053901 
24. Uzun, T., Toptas, O., Saylan, A., Carver, H., Turkoglu, S.A. (2019). Evaluation and comparison of the effects of artesunate, dexamethasone, and tacrolimus on sciatic nerve regeneration. J Oral Maxillofac Surg. 77(5): 1092.e1-1092.e12. https://doi.org/10.1016/j.joms.2018.12.019 PMid:30689960
25. de Souza, L.G., Marcolino, A.M., Kuriki, H.U., Gonçalves, E.C.D., Fonseca, M.C.R., Barbosa, R.I. (2018). Comparative effect of photobiomodulation associated with dexamethasone after sciatic nerve injury model. Lasers Med Sci. 33(6): 1341-1349. https://doi.org/10.1007/s10103-018-2494-9 PMid:29611064
26. Sun, H., Yang, T., Li, Q., Zhu, Z., Wang, L., Bai, G., Li, D., et al. (2012). Dexamethasone and vitamin B(12) synergistically promote peripheral nerve regeneration in rats by upregulating the expression of brain-derived neurotrophic factor. Arch Med Sci. 8(5): 924-930. https://doi.org/10.5114/aoms.2012.31623 PMid:23185205 PMCid:PMC3506245
27. Que, J., Cao, Q., Sui, T., Du, S., Kong, D., Cao, X. (2013). Effect of FK506 in reducing scar formation by inducing fibroblast apoptosis after sciatic nerve injury in rats. Cell Death Dis. 4(3): e526. https://doi.org/10.1038/cddis.2013.56 PMid:23470533 PMCid:PMC3613834
28. Inserra, M.M., Bloch, D.A., Terris, D.J. (1998). Functional indices for sciatic, peroneal, and posterior tibial nerve lesions in the mouse. Microsurgery 18(2): 119-124. https://doi.org/10.1002/(SICI)1098-2752(1998)18:2  <119::AID-MICR10>3.0.CO;2-0
29. Petersen, J., Russell, L., Andrus, K., MacKinnon, M., Silver, J., Kliot, M. (1996). Reduction of extraneural scarring by ADCON-T/N after surgical intervention. Neurosurgery 38(5): 976-983. https://doi.org/10.1097/00006123-199605000-00025 PMid:8727824
30. Yang, R.K., Lowe, J.B., Sobol, J.B., Sen, S.K., Hunter, D.A., Mackinnon, S.E. (2003). Dosedependent effects of FK506 on neuroregeneration in a rat model. Plast Reconst Surg. 112(7): 1832-1840. https://doi.org/10.1097/01.PRS.0000091167.27303.18 PMid:14663227
31. Labroo, P., Shea, J., Sant, H., Gale, B., Agarwal, J. (2017). Effect of combining FK506 and neurotrophins on neurite branching and elongation. Muscle Nerve 55(4): 570-581. https://doi.org/10.1002/mus.25370 PMid:27503321 PMCid:PMC5517102
32. Shahraki, M., Mohammadi, R., Najafpour, A. (2015). Influence of tacrolimus (FK506) on nerve regeneration using allografts: a rat sciatic nerve model. J Oral Maxillofac Surg. 73(7): 1438.e1-9. https://doi.org/10.1016/j.joms.2015.03.032 PMid:25869987 
33. Udina, E., Voda, J., Gold, B.G., Navarro, X. (2002). Comparative dose-dependence study of FK506 on transected mouse sciatic nerve repaired by allograft or xenograft. J Peripher Nerv Syst. 8(3): 145-154. https://doi.org/10.1046/j.1529-8027.2003.03020.x PMid:12904235
34. de Mesquita Coutinho, P.R., Cristante, A.F., de Barros Filho, T.E.P., Ferreira, R., Dos Santos, G.B. (2016). Effects of tacrolimus and erythropoietin in experimental spinal cord lesion in rats: functional and histological evaluation. Spinal Cord. 54(6): 439-444. https://doi.org/10.1038/sc.2015.172 PMid:26481712 PMCid:PMC5399139
35. Lykissas, M.G., Sakellariou, E., Vekris, M.D., Kontogeorgakos, V.A., Batistatou, A.K., Mitsionis, G.I., Beris, A.E. (2007). Axonal regeneration stimulated by erythropoietin: an experimental study in rats. J Neurosci Methods. 164(1): 107-115. https://doi.org/10.1016/j.jneumeth.2007.04.008 PMid:17532473
36. Yan, Y., Sun, H.H., Hunter, D.A., Mackinnon, S.E., Johnson, P.J. (2012). Efficacy of short-term FK506 administration on accelerating nerve regeneration. Neurorehabil Neural Repair. 26(6): 570-580. https://doi.org/10.1177/1545968311431965 PMid:22291040
37. Mekaj, A.Y., Manxhuka-Kerliu, S., Morina, A.A., Duci, S.B., Shahini, L., Mekaj, Y.H. (2017). Effects of hyaluronic acid and tacrolimus on the prevention of perineural scar formation and on nerve regeneration after sciatic nerve repair in a rabbit model. Eur J Trauma Emerg Surg. 43(4): 497-504. https://doi.org/10.1007/s00068-016-0683-4 PMid:27194249
38. Ülger, M., Sezer, G., Özyazgan, İ., Özocak, H., Yay, A., Balcıoğlu, E., Yalçın, B., et al. (2021). The effect of erythropoietin and umbilical cord-derived mesenchymal stem cells on nerve regeneration in rats with sciatic nerve injury. J Chem Neuroanat. 114, 101958. https://doi.org/10.1016/j.jchemneu.2021.101958 PMid:33864937
39. Yin, Y., Xiao, G., Zhang, K., Ying, G., Xu, H., De Melo, B.A.G., Li, S., et al. (2018). Tacrolimus and nerve growth factor treated allografts for neural tissue regeneration. ACS Chem Neurosci. 10(3): 1411-1419. https://doi.org/10.1021/acschemneuro.8b00452 PMid:30525428
40. Lee, J.I., Min Hur, J., You, J., Lee, D.K. (2020). Functional recovery with histomorphometric analysis of nerves and muscles after combination treatment with erythropoietin and dexamethasone in acute peripheral nerve injury. PLoS One 15(9): e0238208. https://doi.org/10.1371/journal.pone.0238208 PMid:32881928 PMCid:PMC7470391


© 2023 Mansouri K. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Conflict of Interest Statement

The authors declared that they have no potential lict of interest with respect to the authorship and/or publication of this article.

Citation Information

Macedonian Veterinary Review. Volume 46, Issue 2, Pages i-xvii, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: 10.2478/macvetrev-2023-0020