Short Communication
Immunohistochemical detection of axonal injury in chimpanzee (Pan troglodytes) with traumatic and fatal brain injury
Peyman Mohammadzadeh * ,
Ahmad Reza Baharvand ,
Sajjad Mohammadi ,
Ramin Fooladi ,
Kimia Azimi ,
Erfan Eftekhar

Mac Vet Rev 2024; 47 (2): i - xi

10.2478/macvetrev-2024-0018

Received: 26 December 2023

Received in revised form: 11 May 2024

Accepted: 13 May 2024

Available Online First: 07 June 2024

Published on: 15 October 2024

Correspondence: Peyman Mohammadzadeh, peymanpathologist@iausdj.ac.ir
PDF HTML

Abstract

Estimating the time of death after traumatic brain injury (TBI) in wildlife is a significant challenge in forensic veterinary medicine. The understanding of histopathological changes and predicting the survival time can prompt critical emergency measures and health management strategies for animals in managed care. Glial fibrillary acidic protein (GFAP) is a wellestablished astrocytic biomarker for diagnosing, monitoring, and predicting TBI outcomes. Moreover, the buildup of Beta- Amyloid Precursor Protein (βAPP) resulting from axonal damage is an energetic process intricately connected to the survival period following the injury. To date, no study has explored the accumulation of GFAP and βAPP in TBI chimpanzees. In human studies, the earliest reported time for detecting axonal injury postmortem in TBI using βAPP is approximately 30 minutes. This study aimed to investigate whether GFAP and βAPP staining can be used to detect postmortem axonal injury within 30 minutes in TBI chimpanzees. Cerebral and cerebellar tissues from a postmortem TBI chimpanzee and control samples were screened for immunopositivity for GFAP and βAPP in neurons using immunohistochemistry and immunofluorescence. The results suggested that neuronal immunopositivity for GFAP was likely a staining artifact, as negative controls also showed neuronal GFAP staining. However, it was not easy to assume the absence of post-traumatic neuronal GFAP. Conversely, the βAPP assay results indicated that axonal damage can be detected within 22 minutes after death, marking the fastest recorded time to date and aiding in diagnosing severe TBI with short survival times. In conclusion, we demonstrated that the axonal damage in captivated chimpanzee caused by severe and sudden concussion can be detected with βAPP staining within 22 minutes.

Keywords: chimpanzee, time of death, GFAP, BAPP, TBI, axonal injury


References

1. Spiezio, C., Vaglio, S., Vandelle, C., Sandri, C., Regaiolli, B. (2021). Effects of rearing on the behaviour of Zoo-housed chimpanzees (Pan troglodytes). Folia Primatol (Basel). 92(2): 91-102. https://doi.org/10.1159/000515127 PMid:33789306
2. McBride, W.R., Eltman, N.R, Swanson, R.L. 2nd. (2023). Blood-based biomarkers in traumatic brain injury: a narrative review with implications for the legal system. Cureus 15(6): e40417. https://doi.org/10.7759/cureus.40417 
3. Johnson, N.H., Kerr, N.A., de Rivero Vaccari, J.P., Bramlett, H.M., Keane, R.W., Dietrich, W.D. (2023). Genetic predisposition to Alzheimer’s disease alters inflammasome activity after traumatic brain injury. Transl Res. 257, 66-77. https://doi.org/10.1016/j.trsl.2023.02.001 PMid:36758791
4. Kim, K.Y., Shin, K.Y., Chang, K.A. (2023). GFAP as a potential biomarker for Alzheimer’s disease: a systematic review and meta-analysis. Cells 12(9): 1309. https://doi.org/10.3390/cells12091309 PMid:37174709 PMCid:PMC10177296
5. Honda, M., Tsuruta, R., Kaneko, T., Kasaoka, S., Yagi, T., Todani, M., Fujita, M., Izumi, T., Maekawa, T. (2010). Serum glial fibrillary acidic protein is a particular biomarker for traumatic brain injury in humans compared with S-100B and neuron-specific enolase. J Trauma. 69(1): 104-109. https://doi.org/10.1097/TA.0b013e3181bbd485 PMid:20093985
6. Butruille, L., Batailler, M., Cateau, M.L., Sharif, A., Leysen, V., Prévot, V., Vaudin, P., Pillon, D., Migaud, M. (2022). Selective depletion of adult GFAP-expressing tanycytes leads to hypogonadotropic hypogonadism in males. Front Endocrinol (Lausanne). 13, 869019. https://doi.org/10.3389/fendo.2022.869019 PMid:35370973 PMCid:PMC8966543
7. Simone, M., De Giacomo, A., Palumbi, R., Palazzo, C., Lucisano, G., Pompamea, F., Micella, S., Pascali, M., Gabellone, A., Marzulli, L., Giordano, P., Gargano, C.D., Margari, L., Frigeri, A., Ruggieri, M. (2023). Serum neurofilament light chain and glial fibrillary acidic protein as potential diagnostic biomarkers in autism spectrum disorders: a preliminary study. Int J Mol Sci. 24(3): 3057. https://doi.org/10.3390/ijms24033057 PMid:36769380 PMCid:PMC9917818
8. Chen, Q., Li, L., Xu, L., Yang, B., Huang, Y., Qiao, D., Yue, X. (2024). Proteomic analysis discovers potential biomarkers of early traumatic axonal injury in the brainstem. Int J Legal Med. 138(1): 207-227. https://doi.org/10.1007/s00414-023-03039-5 PMid:37338605
9. Sharma, M., Subramaniam, A., Sengar, K., Suri, V., Agrawal, D., Chakraborty, N., Pandey, R.M., Malhotra, R., Lalwani, S. (2023). Pathological spectrum and β-APP immunoreactivity as a diagnostic tool of diffuse axonal injury following traumatic brain injury: a novel classification. J Lab Physicians. 15(3): 399-408. https://doi.org/10.1055/s-0043-1761926 PMid:37564231 PMCid:PMC10411120
10. Zhang, J.K., Jayasekera, D., Song, C., Greenberg, J.K., Javeed, S., Dibble, C.F., Blum, J., Sun, P., Song, S.K., Ray, W.Z. (2023). Diffusion basis spectrum imaging provides insights into cervical spondylotic myelopathy pathology. Neurosurgery. 92(1): 102-109. https://doi.org/10.1227/neu.0000000000002183 PMid:36519861 PMCid:PMC10158908
11. Berth, S.H., Lloyd, T.E. (2023). Disruption of axonal transport in neurodegeneration. J Clin Invest. 133(11): e168554. https://doi.org/10.1172/JCI168554 PMid:37259916 PMCid:PMC10232001
12. Wang, F., Yang, T., Li, J., Zhou, X., Liu, L. (2019). Histopathology mapping of biochemical changes in diffuse axonal injury by FTIR micro-spectroscopy. Leg Med (Tokyo). 37, 76-82. https://doi.org/10.1016/j.legalmed.2019.02.001 PMid:30772767
13. Nevitt, B.N., Robinson, N., Kratz, G., Johnston, M.S. (2015). Effectiveness of physical therapy as an adjunctive treatment for trauma-induced chronic torticollis in raptors. J Avian Med Surg. 29(1): 30-39. https://doi.org/10.1647/2014-003 PMid:25867664
14. Liu, X.L., Gao, C.C., Qi, M., Han, Y.L., Zhou, M.L., Zheng, L.R. (2021). Expression of FOXO transcription factors in the brain following traumatic brain injury. Neurosci Lett. 753, 135882. https://doi.org/10.1016/j.neulet.2021.135882 PMid:33838260
15. Bertozzi, G., Maglietta, F., Sessa, F., Scoto, E., Cipolloni, L., Di Mizio, G., Salerno, M., Pomara, C. (2020). Traumatic brain injury: a forensic approach: a literature review. Curr Neuropharmacol. 18(6): 538-550. https://doi.org/10.2174/1570159X17666191101123145 PMid:31686630 PMCid:PMC7457403
16. Wadman, M. (2011). Animal rights: chimpanzee research on trial. Nature. 474(7351): 268-271. https://doi.org/10.1038/474268a PMid:21677722
17. Anderson, J.R. (2018). Chimpanzees and death. Philos Trans R Soc Lond B Biol Sci. 373(1754): 20170257. https://doi.org/10.1098/rstb.2017.0257 PMid:30012743 PMCid:PMC6053983
18. Laurence, H., Kumar, S., Owston, M.A., Lanford, R.E., Hubbard, G.B., Dick, E.J. Jr. (2017). Natural mortality and cause of death analysis of the captive chimpanzee (Pan troglodytes): a 35 year review. J Med Primatol. 46(3): 106-115. https://doi.org/10.1111/jmp.12267 PMid:28418090 PMCid:PMC5423840
19. Lammey, M.L., Lee, D.R., Ely, J.J., Sleeper, M.M. (2008). Sudden cardiac death in 13 captive chimpanzees (Pan troglodytes). J Med Primatol. 37 (Suppl 1): 39-43. https://doi.org/10.1111/j.1600-0684.2007.00260.x PMid:18269527
20. Williams, J.M., Lonsdorf, E.V., Wilson, M.L., Schumacher-Stankey, J., Goodall, J., Pusey, A.E. (2008). Causes of death in the Kasekela chimpanzees of Gombe National Park, Tanzania. Am J Primatol. 70(8): 766-777. https://doi.org/10.1002/ajp.20573 PMid:18506732
21. Chilton, J., Wilcox, A., Lammey, M., Meyer, D. (2016). Characterization of a cardiorenal-like syndrome in aged chimpanzees (Pan troglodytes). Vet Pathol. 53(2): 417-424. https://doi.org/10.1177/0300985815618435 PMid:26792841
22. Anderson, J.R., Gillies, A., Lock, L.C. (2010.) Pan thanatology. Curr Biol. 20(8): R349-R351. https://doi.org/10.1016/j.cub.2010.02.010 PMid:21749950
23. Neal Webb, S.J., Hau, J., Schapiro, S.J. (2019). Does group size matter? Captive chimpanzee (Pan troglodytes) behavior as a function of group size and composition. Am J Primatol. 81(1): e22947. https://doi.org/10.1002/ajp.22947 PMid:30620093 PMCid:PMC6472487
24. Ross, S.R., Bloomsmith, M.A., Bettinger, L., Wagner, K.E. (2009). The influence of captive adolescent male chimpanzees on wounding: management and welfare implications. Zoo Biol. 28(6): 623-634. https://doi.org/10.1002/zoo.20243 PMid:20014028
25. Terio, K.A., Kinsel, M.J., Raphael, J., Mlengeya, T., Lipende, I., Kirchhoff, C.A., Gilagiza, B., Wilson, M.L., Kamenya, S., Estes, J.D. (2011). Pathologic lesions in chimpanzees (Pan troglodytes schweingurthii) from Gombe National Park, Tanzania, 2004-2010. J Zoo Wild Med. 42(4): 597-607. https://doi.org/10.1638/2010-0237.1 PMid:22204054 PMCid:PMC3693847
26. Firląg, M., Kamaszewski, M., Gaca, K., Bałasińska, B. (2013). Age-related changes in the central nervous system in selected domestic mammals and primates. Postepy Hig Med Dosw (Online). 67, 269-275. https://doi.org/10.5604/17322693.1044490 PMid:23619226
27. Al-Sarraj, S., Troakes, C., Rutty, G.N. (2022). Axonal injury is detected by βAPP immunohistochemistry in rapid death from head injury following road traffic collision. Int J Legal Med. 136(5): 1321-1339. https://doi.org/10.1007/s00414-022-02807-z PMid:35488928 PMCid:PMC9375765
28. Castelli, G., Desai, K.M., Cantone, R.E. (2020). Peripheral neuropathy: evaluation and differential diagnosis. Am Fam Physician. 102(12): 732-739.
29. Sullivan, P.G., Rabchevsky, A.G., Waldmeier, P.C., Springer, J.E. (2005). Mitochondrial permeability transition in CNS trauma: cause or effect of neuronal cell death? J Neurosci Res. 79(1 2): 231-239. https://doi.org/10.1002/jnr.20292 PMid:15573402
30. Jung, S., Nah, J., Han, J., Choi, S.G., Kim, H., Park, J., Pyo, H.K., Jung, Y.K. (2016). Dual-specificity phosphatase 26 (DUSP26) stimulates Aβ42 generation by promoting amyloid precursor protein axonal transport during hypoxia. J Neurochem. 137(5): 770-781. https://doi.org/10.1111/jnc.13597 PMid:26924229
31. Koludarova, E.M., Tuchik, E.S., Zorikov, O.V. (2021). Aksotomiya v posmertnoi diagnostike diffuznogo aksonal’nogo povrezhdeniya golovnogo mozga [Axotomy in the postmortem diagnosis of diffuse axonal brain injury]. Sud Med Ekspert. 64(2): 14-17. [In Russian] https://doi.org/10.17116/sudmed20216402114 PMid:33739062
32. Volkenstein, S., Brors, D., Hansen, S., Berend, A., Mlynski, R., Aletsee, C., Dazert, S. (2009). Auditory development in progressive motor neuronopathy mouse mutants. Neurosci Lett. 465(1): 45-49. https://doi.org/10.1016/j.neulet.2009.09.006 PMid:19735697


Copyright

© 2024 Mohammadzadeh P. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Conflict of Interest Statement

The authors declared that they have no potential lict of interest with respect to the authorship and/or publication of this article.

Citation Information

Macedonian Veterinary Review. Volume 47, Issue 2, Pages i-xi, e-ISSN 1857-7415, p-ISSN 1409-7621, DOI: 10.2478/macvetrev-2024-0018